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COMPACTNESS OF THE COMPLEX GREEN OPERATOR

Andrew S. Raich and Emil J. Straube

Abstract. Let Ω ⊂ Cn be a bounded smooth pseudoconvex domain. We show that
compactness of the complex Green operator Gq on (0, q)-forms on bΩ implies compact-
ness of the ∂̄-Neumann operator Nq on Ω. We prove that if 1 ≤ q ≤ n−2 and bΩ satisfies
(Pq) and (Pn−q−1), then Gq is a compact operator (and so is Gn−1−q). Our method
relies on a jump type formula to represent forms on the boundary, and we prove an
auxiliary compactness result for an ‘annulus’ between two pseudoconvex domains. Our
results, combined with the known characterization of compactness in the ∂-Neumann
problem on locally convexifiable domains, yield the corresponding characterization of
compactness of the complex Green operator(s) on these domains.

1. Introduction and Results

Let Ω ⊂ Cn be a bounded, smooth pseudoconvex domain. The Cauchy-Riemann
operator ∂̄ is a closed, densely defined operator mapping L2

(0,q)(Ω) → L2
(0,q+1)(Ω)

and satisfying ∂
2

= 0. The associated complex is the ∂, or Dolbeault, complex. Let
∂̄∗ be the L2-adjoint of ∂̄, and ! = ∂̄∗∂̄ + ∂̄∂̄∗, the ∂̄-Neumann Laplacian. When
Ω is pseudoconvex, and 1 ≤ q ≤ n, ! acting on Dom(!) ⊂ L2

(0,q)(Ω) is invertible
with a bounded inverse Nq. This inverse is called the ∂̄-Neumann operator. We refer
the reader to [11, 4, 8, 13, 31] for background on the ∂-Neumann problem and its
L2-Sobolev theory.

On bΩ, ∂̄ induces the tangential Cauchy-Riemann operator ∂b. Kohn and Rossi
introduced the ∂b complex in an effort to understand the holomorphic extension of
CR-functions from the boundaries of complex manifolds [21]. Let ∂̄b

∗ be the L2-adjoint
of ∂̄b, and !b = ∂̄b∂̄b

∗+∂̄b
∗∂̄b, the Kohn Laplacian. When 0 ≤ q ≤ n−1, !b is invertible

(on (ker ∂̄b)⊥ when q = 0, and on (ker ∂̄b
∗)⊥ in the case q = n − 1) with inverse Gq.

Gq is the complex Green operator. In particular, ∂b, ∂
∗
b , and !b have closed range.

Details may be found in [28, 2, 18, 8]. The regularity and mapping properties of ∂̄b are
well understood when Ω is of finite type and satisfies the condition that all eigenvalues
of the Levi form are comparable. In this case, optimal subelliptic estimates (so called
maximal estimates) were shown in [16]. This work unifies earlier work for strictly
pseudoconvex domains and for domains of finite type in C2. We refer the reader to
[16] for references to this earlier work and further discussion. For general domains, it
is known that subellipticity of Gq implies finite type [10, 17, 19]. For additional work
concerning the relationship of the operators on the boundary to those on the interior,
see [19] and the references there. Finally, global regularity, in the sense of preservation
of Sobolev spaces, holds when Ω admits a defining function that is plurisubharmonic
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at points of the boundary ([3]). A defining function is called plurisubharmonic at the
boundary when its complex Hessian at points of the boundary is positive semidefinite
in all directions. For example, all convex domains admit such defining functions.

The question we address in this article is that of compactness of the complex Green
operator, and, to some extent, its relationship to compactness of the ∂-Neumann
operator. The results discussed above notwithstanding, the regularity results for ∂b

do not always parallel those for ∂. The reason is that there is a symmetry in the
form levels for ∂b with respect to compactness and subellipticity that is absent for
∂. This phenomenon was pointed out by Koenig ([17], p.289). He associates to a
q-form u on bΩ an (n−1− q)-form ũ (through a modified Hodge-∗ construction) such

that ‖u‖ ≈ ‖ũ‖, ∂bũ = (−1)q (̃∂
∗
bu), and ∂

∗
b ũ = (−1)q+1(̃∂bu), modulo terms that

are O(‖u‖). Consequently, a subelliptic estimate or a compactness estimate holds for
q-forms if and only if the corresponding estimate holds for (n−1−q)-forms. In view of
the characterization of subellipticity in terms of finite type [5, 7], and of compactness
of Nq on convex domains by the absence of q-dimensional varieties from the boundary
([12]), such a symmetry between form levels is manifestly absent in the ∂-Neumann
problem. (The analogous construction performed for forms on Ω yields a ũ that in
general is not in the domain of ∂

∗
.) At one point, we will actually need a version

of the tilde operators that intertwines ∂b and ∂
∗
b without 0-th order error terms; we

discuss such a construction in an appendix (section 5).
Our results are as follows. First, we prove the analogue for compactness of the

fact that subellipticity of Gq implies subellipticity of Nq ([10, 17]). It is worthwhile
to note that our method provides, in the case of boundaries of smooth pseudoconvex
domains in Cn, a new proof of this result as well, compare Remark 2.1 below.

Theorem 1.1. Let Ω ⊂ Cn be a bounded pseudoconvex domain with smooth boundary.
Let 1 ≤ q ≤ n − 2. If the complex Green operator Gq is a compact operator on
L2

(0,q)(bΩ), then the ∂̄-Neumann operator Nq is a compact operator on L2
(0,q)(Ω).

Theorem 1.1 is proved in Section 2. Our strategy is simple. Because !q = ∂
∗
∂+∂∂

∗

acts componentwise as (a constant multiple of) the real Laplacian, the L2-norm of
a form u ∈ dom(∂) ∩ dom(∂

∗
) is controlled by ‖∂u‖ + ‖∂∗u‖ plus the (−1/2)-norm

of the trace on the boundary. To the tangential part of this trace, one applies the
compactness estimate from the assumption in the theorem, estimating the norms
of ∂butan and of ∂

∗
butan via trace theorems (here utan denotes the tangential part

of u; taking the tangential part ‘loses’ the normal component of the form, but this
component is benign). In order to avoid various issues related to trace theorems,
we actually work in W 2

(0,q)(Ω), rather than in L2
(0,q)(Ω). Our arguments involve (as

usual) absorbing terms, and since Nq is not a priori known to preserve W 2
(0,q)(Ω),

we use elliptic regularization to ensure finiteness of the terms to be absorbed. We
thus obtain compactness of Nq (‘only’) on W 2

(0,q)(Ω). However, as pointed out in [13],
because Nq is self-adjoint in L2

(0,q)(Ω), compactness in W 2
(0,q)(Ω) implies compactness

in L2
(0,q)(Ω), by a general principle from functional analysis.

Remark 1.2. In view of the symmetry for ∂b and its absence for ∂, discussed above,
Theorem 1.1 implies in particular that compactness or subellipticity of Nq need not
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imply the corresponding property for Gq when q > (n − 1)/2. Of course, the ap-
propriate question becomes whether such an implication holds when compactness or
subellipticity is assumed for the ∂-Neumann operator at levels q and (n − 1 − q).
As far as the authors know, this is open for compactness; for subellipticity, see [19],
Theorem 8.2 and Proposition 5.3.

Next, we show that Catlin’s classical sufficient condition for compactness in the
∂-Neumann problem ([6]), imposed on symmetric form levels (this is essentially dic-
tated by the discussion above), is also sufficient for compactness of the complex
Green operator. Let Iq = {J = (j1, . . . , jq) ∈ Nq : 1 ≤ j1 < · · · < jq ≤ n} and
Λ(0,q)

z be the space of (0, q)-forms at z equipped with the standard Hermitian metric
|
∑

J∈Iq
uJ dz̄J |2 =

∑
J∈Iq

|uJ |2. When the q-tuple J /∈ Iq, uJ is defined in the usual
manner by antisymmetry. For a C2-function λ(z) defined in a neighborhood of z,
define

Hq[λ](z, u) =
∑

K∈Iq−1

n∑

j,k=1

∂2λ(z)
∂zj∂z̄k

ujKukK .

Definition 1.3. bΩ satisfies (Pq) if for all M > 0, there exists UM ⊃ bΩ, λM ∈
C2(UM ) so that for all z ∈ UM and w ∈ Λ(0,q)

z

(1) 0 ≤ λM (z) ≤ 1,
(2) Hq[λ](z, w) ≥ M |w(z)|2.

(2) can be reformulated in two equivalent ways (by standard facts from (multi)linear
algebra): (a) the sum of any q (equivalently: the smallest q) eigenvalues of the matrix
(∂2λM/∂zj∂zk)jk is at least M ; (b) on any affine subspace of complex dimension q
(provided with the inner product from Cn), the (real) Laplacian of λM is at least M .
For (a) this can be seen most easily by working in an orthonormal basis that consists
of eigenvectors of (∂2λM/∂zj∂zk)jk. This also gives that (b) implies (2). That (2)
implies (b) is an application of the Schur majorization theorem ([15], Theorem 4.3.26),
to the effect that the sum of any q diagonal elements of a Hermitian matrix is at least
equal to the sum of the q smallest eigenvalues. Note that if the sum of the smallest
q eigenvalues is at least M , then so is the sum of the smallest (q + 1) (since the
additional eigenvalue is necessarily nonnegative). That is, (Pq) implies (Pq+1) (but
not vice versa). Sibony ([29]) studied (Pq) from the point of view of Choquet theory
for the cone of functions λ with Hq[λ] ≥ 0 (actually only for q = 1, but his arguments
work essentially verbatim for q > 1, see [13]). This work provides in particular ex-
amples of domains with ‘big’ (say of positive measure) sets of points of infinite type
in the boundary, whose ∂-Neumann and complex Green operators are nevertheless
compact.

Theorem 1.4. Let Ω ⊂ Cn be a pseudoconvex domain with C∞ boundary and 1 ≤
q ≤ n−2. If bΩ satisfies (Pq) and (Pn−1−q) (equivalently: (Pq̃), where q̃ = min{q, n−
1−q}), then Gq and Gn−1−q are compact operators on L2

(0,q)(bΩ) and L2
(0,n−1−q)(bΩ),

respectively.

We prove Theorem 1.4 in Section 4. It suffices to produce compact solution opera-
tors for ∂b. To do so, we follow Shaw ([28]) in representing a ∂b–closed form u on the
boundary as the difference of two ∂–closed forms, α− on Ω and α+ on the complement:
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u = α+ − α−. Then, roughly speaking, (Pq) lets us solve the equation ∂β− = α−

on Ω, with suitable compactness estimates, while (Pn−1−q) lets us do the same for
∂β+ = α+ on an appropriate ‘annular’ region surrounding Ω. That the latter can be
done follows essentially from work of Shaw in [27]. The details are given in Section 3
(Proposition 3.1). We mention that in [24], McNeal has introduced a condition called
(P̃q) which is implied by (Pq) and which is sufficient for compactness of Nq. Whether
(P̃q) can take the place of (Pq) in Theorem 1.4 is open. This has to do with the fact
that the exact relationship between (P ), (P̃ ), and compactness is not understood.
However, (P ) and (P̃ ) are known to be equivalent on locally convexifiable domains
(see the discussion in [31]), so that in our next result, (P̃ ) can take the place of (P ).

Theorem 1.1, Theorem 1.4, and work of Fu and Straube [12, 13] immediately allow
us to characterize compactness of the complex Green operator on smooth bounded
locally convexifiable domains. We say that a domain is locally convexifiable if for
every boundary point there is a neighborhood, and a biholomorphic map defined on
this neighborhood, that takes the intersection of the domain with the neighborhood
onto a convex domain.

Theorem 1.5. Let Ω ⊂ Cn be a smooth bounded locally convexifiable domain, and
let 1 ≤ q ≤ n− 2. Then the following are equivalent:
(i) The complex Green operator Gq is compact.
(ii) Both Gq and Gn−1−q are compact.
(iii) The ∂-Neumann operators Nq and Nn−1−q are compact.
(iv) bΩ satisfies both (Pq) and (Pn−1−q).
(v) bΩ does not contain (germs of) complex varieties of dimension q nor of dimension
(n− 1− q).

Proof. On a locally convexifiable domain, compactness of Nq is equivalent to each of
(iv) and (v), at level q ([12, 13]). In particular, (iii), (iv), and (v) are equivalent on
these domains, and by Theorem 1.4, they imply (ii). (i) and (ii) are equivalent by
the symmetry in the form levels for ∂b. By Theorem 1.1., (ii) implies (iii). !

In Theorems 1.4 and 1.5 we assume 1 ≤ q ≤ n − 2, thus excluding the endpoints
q = 0 and q = (n−1). Formally, this restriction arises because if q = 0 or q = (n−1),
then min{q, n− 1− q} = 0, and it is not clear what an appropriate interpretation of
(P0) should be. This is analogous to the situation in the interior. However, N0 =
∂
∗
N2

1 ∂ = ∂
∗
N1(∂

∗
N1)∗ ([8], Theorem 4.4.3.), and compactness of N1 implies that

of N0. (P1) therefore is a sufficient condition for compactness of N0. This situation
persists on the boundary. Let n ≥ 3 and assume bΩ satisfies (P1), and hence (Pn−2).
Then G1 and Gn−2 are compact, by Theorem 1.4. In turn, this implies that both G0

and Gn−1 are compact, by formulas analogous to the one quoted above for N0. That
is, (P1) is a sufficient condition for compactness of G0 and Gn−1.

2. Proof of Theorem 1.1

Let W s(U) be the usual Sobolev space of order s on U (U may be an open subset
of Cn or of bΩ) and let W s

(0,q)(U) be space of (0, q)-forms with coefficients in W s(U).
We first express compactness of Gq in the usual way in terms of a family of estimates.
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Let s ≥ 0. Then for any ε > 0, there exists Cε > 0 so that

(1) ‖u‖W s(bΩ) ≤ ε
(
‖∂̄bu‖W s(bΩ) + ‖∂̄b

∗u‖W s(bΩ)

)
+ Cε‖u‖W−1(bΩ) ,

for all u ∈ dom(∂b)∩dom(∂
∗
b) when 1 ≤ q ≤ (n−2). When q = (n−1), we assume that

u ⊥ ker(∂
∗
b) (equivalently u ∈ Im(∂b)). When s = 0, (1) is the standard compactness

estimate that is equivalent to compactness of Gq; the proof is the same as that for the
corresponding statement concerning the ∂-Neumann operator (see for example [13],
Lemma 1.1). This remark applies likewise to lifting the estimate to higher Sobolev
norms.

The main a priori estimate to be proved is as follows: for all ε > 0, there exists
Cε > 0 so that if u ∈ Dom(∂̄∗)∩W 2

(0,q)(Ω), ∂̄u ∈ W 2
(0,q+1)(Ω), and ∂̄∗u ∈ W 2

(0,q−1)(Ω),
then

(2) ‖u‖W 2(Ω) ≤ ε
(
‖∂̄u‖W 2(Ω) + ‖∂̄∗u‖W 2(Ω)

)
+ Cε‖u‖W 1(Ω) .

Fix a defining function ρ for Ω, so that |∇ρ| = 1 near bΩ (i.e. take ρ to agree with
the signed boundary distance near bΩ). We first estimate the normal component
of u =

∑
J∈Iq

uJdzJ ∈ W 2
(0,q)(Ω) ∩ dom(∂

∗
). This component is given by unorm =

∑n
j=1

∑
K∈Iq−1

(∂ρ/∂zj)ujKdzK , and its trace on bΩ vanishes. Because ϑ∂ + ∂ϑ acts
coefficientwise as a constant multiple of the (real) Laplacian, we obtain

(3) ‖unorm‖W 2(Ω) ≤ ‖∆unorm‖L2(Ω)

≤ C
(
‖∂̄u‖W 1(Ω) + ‖∂̄∗u‖W 1(Ω) + ‖u‖W 1(Ω)

)

≤ ε
(
‖∂̄u‖W 2(Ω) + ‖∂̄∗u‖W 2(Ω)

)
+ Cε‖u‖W 1(Ω) ;

it is assumed that u is as in (2) above. The last inequality in (3) comes from interpo-
lating Sobolev norms (‖f‖W 1(Ω) ≤ ε‖f‖W 2(Ω) + Cε‖f‖L2(Ω)). Similarly, we have that
unorm ∈ W 3

(0,q−1)(Ω) and

(4) ‖unorm‖W 3(Ω) ≤ ‖∆unorm‖W 1(Ω) ≤ C
(
‖∂̄u‖W 2(Ω) + ‖∂̄∗u‖W 2(Ω) + ‖u‖W 2(Ω)

)
.

(4) is important because it implies that ‖∂unorm‖W 2(Ω) and ‖∂∗unorm‖W 2(Ω) are also
dominated by the right hand side of (4). (Note that unorm has vanishing trace on the
boundary, so it is in dom(∂

∗
).) Then so are ‖∂utan‖W 2(Ω) and ‖∂∗utan‖W 2(Ω), where

utan = u− (∂ρ ∧ unorm) is the tangential part of u. As a result, it now only remains
to establish (2) for utan.

Let ε > 0. As in (3), we have

(5) ‖utan‖W 2(Ω) ≈ ‖/utan‖L2(Ω) + ‖utan‖W 3/2(bΩ)

"
(
‖∂̄utan‖W 1(Ω) + ‖∂̄∗utan‖W 1(Ω)

)
+ ‖utan‖W 3/2(bΩ)

≤ ε
(
‖∂̄utan‖W 2(Ω) + ‖∂̄∗utan‖W 2(Ω)

)
+ Cε‖utan‖W 1(Ω) + ‖utan‖W 3/2(bΩ) .

We are going to apply (1) to the last term on the right hand side of (5). Note that
by definition, ∂b(utan|bΩ) is the trace of ∂utan, projected onto the tangential (q + 1)-
forms. Because utan is tangential near the boundary, ∂

∗
b(utan|bΩ) equals the trace of

∂
∗
utan on the boundary, modulo a term of order zero (i.e. involving no derivatives of
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utan). Therefore, with s = 3/2 in (1),

(6)
‖utan‖W 3/2(bΩ) ≤ ε

(
‖∂̄b(utan)‖W 3/2(bΩ) + ‖∂̄b

∗(utan)‖W 3/2(bΩ)

)
+ Cε‖utan‖W−1(bΩ)

≤ ε
(
‖∂̄utan‖W 3/2(bΩ) + ‖∂̄∗utan‖W 3/2(bΩ) + ‖utan‖W 3/2(bΩ)

)
+ Cε‖utan‖W 1/2(bΩ)

≤ ε
(
‖∂̄utan‖W 2(Ω) + ‖∂̄∗utan‖W 2(Ω) + ‖utan‖W 2(Ω)

)
+ Cε‖utan‖W 1(Ω) .

Putting (6) into the right hand side of (5) (for ‖utan‖W 3/2(bΩ)) and absorbing the term
ε‖utan‖W 2(Ω) gives (2) for utan. With this, by what was said above, (2) is established
for u.

Because (2) is only an a priori estimate, and Nqu is not (yet) known to be in
W 2

(0,q)(Ω) for u ∈ W 2
(0,q)(Ω), we work first with the regularized operators Nδ,q,

0 < δ ≤ 1, arising from elliptic regularization ([11], 2.3, [32], 12.5). Nδ,q inverts (in
L2

(0,q)(Ω)) the operator !δ,q, the unique self-adjoint operator associated to the qua-
dratic form Qδ(u, v) = (∂u, ∂v)L2(Ω) + (∂

∗
u, ∂

∗
v)L2(Ω) + δ(∇u,∇v)L2(Ω), with form

domain W 1
(0,q)(Ω)∩dom(∂

∗
). Equivalently: for u ∈ L2

(0,q)(Ω), v ∈ W 1
(0,q)(Ω)∩dom(∂

∗
),

(u, v)L2(Ω) = Qδ(Nδ,qu, v). Note that for u ∈ dom(!δ,q),

(7) !δ,qu = ((−1/4) + δ)∆u ,

where ∆ acts coefficientwise. (Nonetheless, !δ,q is not a multiple of !q; the domain
has changed.) Qδ(u, u) is coercive (it dominates ‖u‖W1(Ω)), and consequently Nδ,q

gains two derivatives in Sobolev norms (see e.g. [32], 12.5). In particular, when
u ∈ C∞(0,q)(Ω), then so is Nδ,qu.

We now claim that the Nδ,q are compact on W 2
(0,q)(Ω), ‘uniformly’ in δ > 0. That

is, we claim the following uniform compactness estimate: for every ε > 0, there exists
a constant Cε such that for u ∈ W 2

(0,q)(Ω) and 0 < δ ≤ 1,

(8) ‖Nδ,qu‖2W 2(Ω) ≤ ε‖u‖2W 2(Ω) + Cε‖u‖2L2(Ω) .

(This type of estimate is equivalent to compactness, compare [24], Lemma 2.1; [9],
Proposition V.2.3 .) Because C∞(0,q)(Ω) is dense in W 2

(0,q)(Ω) (and Nδ,q is continuous
in W 2

(0,q)(Ω)), it suffices to establish (8) for u ∈ C∞(0,q)(Ω). So let u ∈ C∞(0,q)(Ω). In the
following estimates, all constants will be uniform in δ. We first apply (2) to Nδ,qu:

(9) ‖Nδ,qu‖W 2(Ω) ≤ ε(‖∂Nδ,qu‖W 2(Ω) + ‖∂∗Nδ,qu‖W 2(Ω)) + Cε‖Nδ,qu‖W 1(Ω) .

Interpolating Sobolev norms, using that Nδ,q is bounded in L2
(0,q)(Ω) with a bound

that is uniform in δ, and absorbing ε‖Nδ,qU‖W 2(Ω), (9) gives

(10) ‖Nδ,qu‖W 2(Ω) ≤ ε(‖∂Nδ,qu‖W 2(Ω) + ‖∂∗Nδ,qu‖W 2(Ω)) + Cε‖u‖L2(Ω) .

The estimate ‖∂Nqu‖W 2(Ω) + ‖∂∗Nqu‖W 2(Ω) " ‖Nqu‖W 2(Ω) + ‖u‖W 2(Ω) is standard;
we next show that it remains valid for the regularized operators Nδ,q, with constants
uniform in δ. This is known, but somewhat hard to pinpoint in the literature.

By interior elliptic regularity (uniform in δ > 0, in view of (7)) (and interpolation
of Sobolev norms), we can estimate ε(‖∂Nδ,qu‖W 2(U) + ‖∂∗Nδ,qu‖W 2(U)) by the right
hand side of (8) for any relatively compact subdomain U of Ω. As a result, it suffices
to estimate ϕ∂Nδ,qu and ϕ∂

∗
Nδ,qu for a smooth cutoff function compactly supported
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in a special boundary chart. We will also let differential operators act coefficientwise
in the associated special boundary frame. Then, a tangential derivative will preserve
the domain of ∂

∗
. (For information on special boundary charts and frames, the reader

may consult [11] or [8].) We denote by ∇T the gradient with respect to the tangential
variables and by ∂/∂ν the normal derivative.

For the tangential derivatives, we have

(11) ‖∇2
T ϕ∂Nδ,qu‖2L2(Ω) + ‖∇2

T ϕ∂
∗
Nδ,qu‖2L2(Ω)

" ‖ϕ∂∇2
T Nδ,qu‖2L2(Ω) + ‖ϕ∂

∗∇2
T Nδ,qu‖2L2(Ω) + ‖Nδ,qu‖2W 2(Ω)

" Qδ(∇2
T Nδ,qu,∇2

T Nδ,qu) + ‖Nδ,qu‖2W 2(Ω)

" |(∇2
T u,∇2

T Nδ,qu)| + ‖Nδ,qu‖2W 2(Ω)

" ‖Nδ,qu‖2W 2(Ω) + ‖u‖2W 2(Ω) .

Here, constants are allowed to depend on ϕ (but not on δ). We have used the estimate
Qδ(∇2

T Nδ,qu,∇2
T Nδ,qu) " |(∇2

T u,∇2
T Nδ,qu)|+ ‖Nδ,qu‖2W 2(Ω), which follows from [20],

Lemma 3.1, [11], Lemma 2.4.2 . In the case at hand, it can be established by the usual
procedure: repeated integration by parts and commuting operators as necessary to
make terms of the form Qδ(Nδ,qu, v) = (u, v) appear.

We now come to the normal derivatives. Expressing the real Laplacian in the
coordinates of the special boundary chart gives

(12)
∥∥∥

∂2v

∂ν2

∥∥∥
2

L2(Ω)
≤ Cq,Ω

(
‖/v‖2L2(Ω) + ‖v‖2W 1(Ω) + ‖∇2

T v‖2L2(Ω)

)

Note that ‖/ϕ∂̄Nδ,qu‖2L2(Ω) ≈ ‖ϕ∂∆Nδ,qu‖2L2(Ω) + ‖∂Nδ,qu‖W 1(Ω) " ‖u‖2W 1(Ω) +
‖Nδ,qu‖W 2(Ω), in view of (7). There is a similar estimate for the Laplacian of
ϕ∂̄∗Nδ,qu. Applying (12) to v = ϕ∂̄Nδ,qu and ϕ∂̄∗Nδ,qu respectively, and using (11)
for the ∇2

T terms now shows that

(13)
∥∥∥

∂2(ϕ∂̄Nδ,qu)
∂ν2

∥∥∥
2

L2(Ω)
+

∥∥∥
∂2(ϕ∂̄∗Nδ,qu)

∂ν2

∥∥∥
2

L2(Ω)
" ‖Nδ,qu‖2W 2(Ω) + ‖u‖2W 2(Ω) .

Concerning the L2-norms of the mixed derivatives, we note that they are dominated
by the L2-norms of the pure derivatives ([23], Theorem 7.4), and therefore by the right
hand sides of (11) and (13). (We remark that using this fact is merely a convenience,
not a necessity; normal derivatives can be expressed in terms of tangential ones, ∂,
ϑ, and terms of order zero.) Together with (10), (11), and (13), this gives (via a
partition of unity subordinate to a cover of the boundary by special boundary charts,
and summing over the charts plus a compactly supported term)

(14) ‖Nδ,qu‖W 2(Ω) ≤ ε(‖Nδ,qu‖W 2(Ω) + ‖u‖W 2(Ω)) + Cε‖u‖L2(Ω) ,

where the family Cε has been rescaled. After absorbing ε‖Nδ,qu‖W 2(Ω), (14) gives (8)
(first for ε less than 1/2, say; but that is sufficient).

Because the constant Cε in (8) is independent of δ, we can let δ tend to zero
and obtain (8) with Nqu. Indeed, if u ∈ W 2

(0,q)(Ω), then {Nδ,qu : 0 < δ ≤ 1} is
a bounded set in W 2

(0,q)(Ω). So there exists a sequence δn → 0 and û ∈ W 2
(0,q)(Ω)

so that Nδn,qu → u weakly in W 2
(0,q)(Ω). One easily checks that û ∈ dom(∂

∗
).
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Also, if v ∈ W 1
(0,q)(Ω) ∩ Dom(∂̄∗), then limn→∞Qδn(Nδn,qu, v) = Q(û, v). How-

ever, Qδn(Nδn,qu, v) = (u, v) = Q(Nqu, v). Thus, Q(û, v) = Q(Nqu, v) for all
v ∈ W 1

(0,q)(Ω) ∩ dom(∂
∗
), whence û = Nqu (since W 1

(0,q)(Ω) ∩ dom(∂
∗
) is dense in

dom(∂)∩dom(∂
∗
) with respect to the graph norm induced by Q). Consequently, Nqu

is in W 2
(0,q)(Ω) and satisfies (8), and so is a compact operator on W 2

(0,q)(Ω).
It remains to be seen that Nq is compact on L2

(0,q)(Ω). This turns out to be
a consequence of its compactness on W 2

(0,q)(Ω) and a general fact from functional
analysis which we now state. Suppose H is a Hilbert space and B ⊂ H is a dense
subspace. Assume that B is provided with a norm under which it is complete, and
under which it embeds continuously into H (i.e. ‖u‖H ≤ C‖u‖B for u ∈ B). Suppose
T is a bounded linear operator on B which is symmetric with respect to the inner
product induced from H: (Tu, v)H = (u, Tv)H for all u, v ∈ B. If T is compact on
B, then it (has a unique extension to H which) is compact on H. This is Corollary
II from [22]. In our situation, it suffices to take H = L2

(0,q)(Ω), B = W 2
(0,q)(Ω), and

T = Nq, to conclude that Nq is compact on L2
(0,q)(Ω).

This concludes the proof of Theorem 1.1.

Remark 2.1. Our proof above,combined with [30], yields a new proof that subellip-
ticity of Gq implies subellipticity of Nq, 1 ≤ q ≤ (n− 2). We give an outline. Assume
Gq is subelliptic of order 2s. Equivalently: ‖u‖W s(bΩ) " ‖∂bu‖L2(bΩ) + ‖∂∗bu‖L2(bΩ)

for u ∈ dom(∂b) ∩ dom(∂
∗
b). First, our arguments above can be followed almost

verbatim to obtain that Nq maps W 2−s
(0,q)(Ω) to W 2+s

(0,q)(Ω). One change needed is
in (the analogue of) (11): the inner product (∇2

T u,∇2
T Nqu) has to be estimated

by |(∇2
T u,∇2

T Nqu)| " ‖∇2
T u‖W−s(Ω)‖∇2

T Nqu‖W s(Ω) " ‖u‖W 2−s(Ω)‖Nqu‖W 2+s(Ω) ≤
(s.c.)‖Nqu‖2W 2+s(Ω) + (l.c.)‖u‖2W 2−s(Ω). Note that a simplification occurs in that we
no longer have to work with the regularized operators: Nq is already known to be
compact (by Theorem 1.1), hence to be globally regular. That this translates into
honest subellipticity of Nq follows from arguments used in [30] in a closely related
context. These arguments are also based on [22]. (Very) roughly speaking, they
are as follows. Denote by Λs the standard tangential Bessel potential operators of
order s (alternatively: the s-th power of the tangential Laplace-Beltrami operator
may be used). Then Nq mapping W 2−s

(0,q)(Ω) (continuously) to W 2+s
(0,q)(Ω) is equiv-

alent to ΛsNqΛs (we are omitting cutoff functions) being continuous on W 2
(0,q)(Ω).

But ΛsNqΛs is symmetric with respect to the L2 inner product, and so is then also
continuous in L2

(0,q)(Ω), by [22], Theorem I. (Theorem I is considerably more elemen-
tary than Corollary II used above for compactness.) As a result, Nq maps W−s

(0,q)(Ω)
continuously to W s

(0,q)(Ω). By interpolation with the continuity from W 2−s
(0,q)(Ω) to

W 2+s
(0,q)(Ω), Nq maps L2

(0,q)(Ω) continuously to W 2s
(0,q)(Ω) (see e.g. [23], Theorem 12.4,

for the interpolation between W−s(Ω) and W 2−s(Ω), negative indices require some
care).

3. Compactness of the ∂̄-Neumann operator on an ‘annulus’

In this section we prove an auxiliary result that will be used in the proof of Theorem
1.4, but which is of independent interest. If Ω and Ω1 are two bounded pseudoconvex
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domains with Ω ⊂ Ω1, we call Ω+ := Ω1 \ Ω an ‘annulus’. The ∂̄-Neumann problem
on Ω+ has been studied in [27]. Since Ω+ is not pseudoconvex, ker(!q) need not be
trivial, and we let

Hq = ker(!q) = {u ∈ Dom(∂̄) ∩Dom(∂̄∗) : ∂̄u = 0, ∂̄∗u = 0},

the harmonic (0, q)-forms. Let Hq be the orthogonal projection of L2
(0,q)(Ω

+) onto
Hq.

Proposition 3.1. Let Ω+ be an ‘annulus’ as above, with smooth boundary, let 1 ≤
q ≤ (n− 2). Assume the outer boundary of Ω+ satisfies (Pq), and the inner boundary
satisfies (Pn−1−q). Then Hq is finite dimensional and Nq is compact.

We comment on the assumptions. (Pn−1−q) arises as follows. When establishing
compactness of Nq assuming a condition like (P ) (on a pseudoconvex domain), one
uses the Kohn-Morrey-Hörmander formula, or a twisted version of it ([24, 31]). In the
case of an ‘annulus’ between two pseudoconvex domains, the part of the boundary
integral from the inner boundary has the wrong sign (it is nonpositive instead of
nonnegative), and a modification is needed. From the work in [27], when applied
to our situation, it turns out that the condition needed on the Hessian of a suitable
function is precisely that the sum of any (n− 1− q) eigenvalues be at least M . The
details are as follows.

In order to state Shaw’s result, we work temporarily in a special boundary chart.
Let L1, . . . , Ln−1 be a (local) orthonormal basis of T (1,0)(bΩ), Ln the complex (unit)
normal, and ωj the (1, 0)-form dual to Lj . For a function f , let fjk be defined by
∂∂̄f =

∑n
j,k=1 fjk ωj ∧ ωk. Let ϕ ∈ C∞(Ω+), real valued, and let u =

∑
J∈Iq

uJωJ ∈
C∞(0,q)(Ω+)∩dom(∂

∗
ϕ), supported in a special boundary chart for the inner boundary.

Here, ∂
∗
ϕ is the adjoint of ∂ with respect to the weighted L2 inner product with

weight e−ϕ. The computations that lead to (3.23) in [27] are valid for general weight
functions, and there is the following analogue of (3.23) (this is made explicit in [1],
Proposition 2.1):

(15)
∑

K∈Iq−1

n∑

j,k=1

∫

Ω+
ϕjkujKukKe−ϕ dV −

∑

J∈Iq

∫

Ω+

( n−1∑

j=1

ϕjj

)
|uJ |2e−ϕ dV

+
∑

K∈Iq−1

n∑

j,k=1

∫

bΩ
ρjkujKukKe−ϕ dσ −

∑

J∈Iq

∫

bΩ

( n−1∑

j=1

ρjj

)
|uJ |2e−ϕ dσ

+
∑

J∈Iq



‖L̄nuJ‖2ϕ +
n−1∑

j=1

‖δjuJ‖2ϕ





≤ C
(
‖∂̄u‖2ϕ + ‖∂̄∗ϕu‖2ϕ + ‖u‖2ϕ

)
,

where δj = eϕLje−ϕ, ρ is a defining function for Ω+, and C is independent of ϕ.
Denote by I ′q the set of strictly increasing q-tuples that do not contain n. In the
second line of (15), the sums are effectively only over 1 ≤ k, j ≤ (n − 1), K ∈ I ′q−1,
and J ∈ J ′

q , respectively (unK = 0 on bΩ; u ∈ dom(∂
∗
)). The integrand in this line
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(without the weight factor) is therefore

(16)
∑

K∈I′q−1

n−1∑

j,k=1

ρjkujKukK −
∑

J∈I′q

( n−1∑

j=1

ρjj

)
|uJ |2

=
∑

K∈I′q−1

n−1∑

j,k=1

(
ρjk −

1
q

( n−1∑

%=1

ρ%%

)
δjk

)
ujKukK .

This is because every |uJ |2 can be written in precisely q ways as |ujK |2. Note that
the Hessian of ρ is negative semidefinite on the complex tangent space at points of
bΩ ⊂ bΩ+. As a result, the second line in (15) is nonnegative: the right hand side
equals at least |u|2 times the sum of the smallest q eigenvalues of the Hermitian matrix



ρjk −
1
q




n−1∑

j=1

ρjj



 δjk




n−1

j,k=1

(this is analogous to the discussion of property (Pq) in section 1). Such a sum equals
minus the trace

∑n−1
j=1 ρjj plus a sum of q eigenvalues of (ρjk)n−1

j,k=1, hence is at least
equal to the negative of the sum of the largest (n−1−q) eigenvalues of ((ρ)jk)n−1

j,k=1, and
so is nonnegative. Letting the sums in the first line of (15) run only over K ∈ I ′q−1,
J ∈ I ′q, and 1 ≤ j.k ≤ n− 1, respectively, makes a mistake that involves (coefficients
of) the normal component of u. These terms can be estimated by the right hand
side of (15) plus Cϕ‖e−ϕ/2u‖2W−1(Ω+). This follows from an argument similar to that
in (3), starting with the W 1 to W−1 version of the first inequality in (3), and using
interpolation of Sobolev norms to get rid of the dependence on ϕ of the (first) constant.
Therefore, estimate (15) remains valid when the sums in the first line are restricted
so that no normal components of u appear, and the right hand side is augmented
by Cϕ‖e−ϕ/2u‖2W−1(Ω+). Observe that as in (16), the integrand (without the weight
factor e−ϕ) in the first line in (15) is then

(17)
∑

K∈I′q−1

n−1∑

j,k=1

ϕjkujKukK −
∑

J∈I′q

( n−1∑

j=1

ϕjj

)
|uJ |2

=
∑

K∈I′q−1

n−1∑

j,k=1

(
ϕjk −

1
q

( n−1∑

%=1

ϕ%%

)
δjk

)
ujKukK ,

where δjk denotes the Kronecker δ. Omitting the nonnegative second and third lines
from (15) (in its modified form), we obtain for u supported in a special boundary
chart:

(18)
∑

K∈I′q−1

n−1∑

j,k=1

∫

Ω+

(
ϕjk −

1
q

( n−1∑

%=1

ϕ%%

)
δjk

)
ujKukK e−ϕdV

≤ C
(
‖∂̄u‖2ϕ + ‖∂̄∗ϕu‖2ϕ + ‖u‖2ϕ

)
+ Cϕ‖e−ϕ/2u‖2W−1(Ω) .

We are now ready to prove Proposition 3.1.
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Proof of Proposition 3.1. Fix M (sufficiently large) and choose a function λM ∈
C∞(Ω+), 0 ≤ λM ≤ 1, that agrees near the inner boundary (say, in U1 ∩ Ω+) with
−µM , where µM is a function given by the definition of (Pn−1−q), and near the outer
boundary (say, on U2 ∩Ω+) with a function given by the definition of (Pq). We claim
that we have the following estimate (for M ≥ M0):

(19) ‖u‖2λM
≤ C

M
(‖∂u‖2λM

+‖∂∗λM
u‖2λM

)+CM‖u‖2W−1(Ω+) , u ∈ dom(∂)∩dom(∂
∗
) ,

with a constant C that does not depend on M . Note that saying that u ∈ dom(∂
∗
) is

the same as saying that u ∈ dom(∂
∗
λM

). Also, the unweighted norms and the weighted
norms are equivalent, with bounds that are uniform in M (because 0 ≤ λM ≤ 1).

It suffices to establish (19) for forms that are smooth up to the boundary; the
density of these forms in dom(∂) ∩ dom(∂

∗
) does not require pseudoconvexity ([14],

Proposition 2.1.1; [8], Lemma 4.3.2).
Assume first that u is supported near the outer boundary, on U2 ∩Ω+. Then (19)

follows immediately from the Kohn-Morrey-Hörmander formula ([14], Proposition
2.1.2; [8], Proposition 4.3.1) and from (2) in the definition of (Pq).

Now assume that u is similarly supported near the inner boundary, on U1 ∩ Ω+.
Via a partition of unity, we may assume that u is supported in a special boundary
chart. We use (18) with ϕ = λM . Note that λM = −µM near the support of u, where
µM satisfies (1) and (2) in the definition of (Pn−1−q). At a point, the integrand on
the left hand side of (18) (without the exponential factor) is at least as big as |u|2
times the sum of the smallest q eigenvalues of the Hermitian matrix

(20)

(
(−µM )jk +

1
q

( n−1∑

%=1

(µM )%%

)
δjk

)n−1

j,k=1

(see again the discussion of property (Pq) in section 1). Such a sum equals the trace∑n−1
%=1 (µM )%% minus a sum of q eigenvalues of ((µM )jk)n−1

j,k=1, hence is at least equal
to the sum of the smallest (n − 1 − q) eigenvalues of ((µM )jk)n−1

j,k=1, which in turn
is at least equal to the sum of the smallest (n − 1 − q) eigenvalues of ((µM )jk)n

j,k=1

(by the equivalence of (2) and (b), or directly by the Schur majorization theorem
([15], Theorem 4.3.26). That is, the sum is at least equal to the sum of the smallest
(n− 1− q) eigenvalues of (∂2µM/∂zj∂zk)n

j,k=1, so is at least equal to M . This gives
(19) (after absorbing the term C‖u‖2λM

and rescaling M), but with u on the left hand
side replaced by the tangential part of u. Again, the normal component is under
control, and as in (15), the square of its norm is estimated by the right hand side of
(19). This proves estimate (19) when u is supported near the inner boundary.

When u has compact support in Ω+, (19) follows by interior elliptic regularity
of ∂ ⊕ ∂

∗
λM

, with a constant C that is independent of the support (CM depends on
the support). The reason that C may be taken to be independent of the support is
that ‖∂u‖+ ‖∂∗λM

u‖ controls the W 1-norm on a relatively compact subset. Since we
only need to bound the L2-norm, we can interpolate between the W 1-norm and the
W−1-norm to get the desired estimate.

Finally, when u is general, choose a partition of unity on Ω+, χ0,χ1, and χ2, such
that χ0 is compactly supported in Ω+, and χ1 and χ2 are supported in U1 and U2,
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respectively. We then have (19) for χ0u, χ1u, and χ2u. The right hand sides of these
estimates contain terms where ∂ or ∂

∗
λM

produce derivatives of the cutoff functions.
However, these terms contain no derivatives of u, and they are compactly supported.
Consequently, they can be estimated as in the previous paragraph. Collecting the
resulting estimates establishes (19), with C independent of M .

(19) implies that from every sequence {uk}∞k=1 in dom(∂)∩dom(∂
∗
λM

) (which equals
dom(∂) ∩ dom(∂

∗
)) with ‖un‖λM bounded and ∂uk → 0, ∂

∗
λM

uk → 0, one can ex-
tract a subsequence which converges in (weighted) L2

(0,q)(Ω
+). It suffices to find a

subsequence which converges in W−1
(0,q)(Ω

+) (using that L2
(0,q)(Ω

+) ↪→ W−1
(0,q)(Ω

+)
is compact); (19) implies that such a subsequence is Cauchy (hence convergent) in
L2

(0,q)(Ω
+). General Hilbert space theory (see [14], Theorems 1.1.3 and 1.1.2) now

gives that ker(!λM ,q) is finite dimensional and that ∂ : L2
(0,q)(Ω

+) → L2
(0,q+1)(Ω

+)
and ∂

∗
λM

: L2
(0,q)(Ω

+) → L2
(0,q−1)(Ω

+) have closed range. But then ∂ : L2
(0,q−1)(Ω

+) →
L2

(0,q)(Ω
+) also has closed range (its adjoint in the weighted space has closed range),

and consequently, so does ∂
∗

(acting on (0, q)-forms; this also follows from the formula
∂
∗
v = e−λM ∂

∗
λM

(eλM v)). Therefore, we have the estimate

(21) ‖u‖L2(Ω+) " ‖∂u‖L2(Ω+) + ‖∂∗u‖L2(Ω+) + ‖Hqu‖L2(Ω+)

for u ∈ dom(∂) ∩ dom(∂
∗
). This estimate implies the existence of Nq as a bounded

operator on L2
(0,q)(Ω

+) that inverts !q on H⊥
q (see for example [27], Lemma 3.2

and its proof). Moreover, the range of ∂ : L2
(0,q−1)(Ω

+) → L2
(0,q)(Ω

+) has finite
codimension in ker(∂) ⊂ L2

(0,q)(Ω
+), because ker(!λM ,q) is finite dimensional). But

the (unweighted) orthogonal complement of this range in ker(∂) ⊂ L2
(0,q)(Ω

+) equals
ker(!q), which is therefore finite dimensional as well.

To see that Nq is compact, it suffices to show compactness on H⊥
q (since Nq is zero

on Hq). When u ∈ H⊥
q , we have from (21) (since Nqu ∈ H⊥

q )

(22) ‖Nqu‖L2(Ω+) " ‖∂Nqu‖L2(Ω+) + ‖∂∗Nqu‖L2(Ω+)

= ‖(∂∗Nq+1)∗u‖L2(Ω+) + ‖∂∗Nqu‖L2(Ω+) .

Therefore, we only need to show that both ∂
∗
Nq and ∂

∗
Nq+1 are compact. Now

∂
∗
Nq+1α gives the norm minimizing solution to ∂v = α, α ∈ Im(∂) ⊂ L2

(0,q+1)(Ω
+),

while ∂
∗
λM

NλM ,q+1α gives a different solution (the one that minimizes the weighted
norm). For such α, (19) therefore implies (with constants independent of M)

(23) ‖∂∗Nq+1α‖2L2(Ω+) ≤ ‖∂
∗
λM

NλM ,q+1α‖2L2(Ω+) " ‖∂∗λM
NλM ,q+1α‖2λM

" C

M
‖α‖2λM

+ CM‖∂
∗
λM

NλM ,q+1α‖2W−1(Ω+)

" C

M
‖α‖2L2(Ω+) + CM‖∂

∗
λM

NλM ,q+1α‖2W−1(Ω+) .

Because C is independent of M and ∂
∗
λM

NλM ,q+1 : L2
(0,q+1)(Ω

+) → W−1
(0,q)(Ω

+) is com-
pact (L2(Ω+) imbed compactly into W−1(Ω+)), (23) implies that ∂

∗
Nq+1 is compact
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on Im(∂) ([24], Lemma 2.1, [9], Proposition V.2.3). But on the orthogonal complement
of Im(∂), ∂

∗
Nq+1 = 0, and so ∂

∗
Nq+1 is compact from L2

(0,q+1)(Ω
+) → L2

(0,q)(Ω
+).

To estimate ∂
∗
Nqα, we cannot invoke (19) directly (because ∂

∗
Nqα is a (q−1)-form),

and an additional step is needed. We have (again for α ∈ Im(∂) ⊂ L2
(0,q)(Ω

+))

(24) ‖∂∗λM
NλM ,qα‖2λM

= (∂∂
∗
λM

NλM ,qα, NλM ,qα)λM = (α, NλM ,qα)λM

≤ 2C

M
‖α‖2λM

+
M

2C
‖NλM ,qα‖2λM

≤ 2C

M
‖α‖2λM

+
1
2
‖∂∗λM

NλM ,qα‖2λM
+ CM‖NλM α‖2W−1(Ω+) .

Here we have used that ∂α = 0 and that α ⊥λM HλM ,q (since α ∈ Im(∂)) in the
equality in the second line, the inequality |ab| ≤ (1/A)a2 + Ab2, and (19) for the last
estimate. The middle term in the last line can now be absorbed, and combining the
resulting estimate with ‖∂∗Nqα‖2L2(Ω+) ≤ ‖∂

∗
λM

NλM ,qα‖2L2(Ω+) gives an analogue of
(23). The rest of the argument is the same as above. This completes the proof of
Proposition 3.1. !

4. Property (P ) and compactness of the complex Green operator

In this section, we prove Theorem 1.4. We may assume that 1 ≤ q ≤ n−1− q, and
we must show that Gq is compact (by the symmetry between form levels discussed in
section 1, Gn−1−q is then compact as well). For u ∈ L2

(0,q)(bΩ), we have the Hodge
decomposition u = ∂b∂

∗
bGqu + ∂

∗
b∂bGqu ([8], Theorem 9.4.2). In particular, when

∂bu = 0, ∂
∗
bGqu gives the solution of minimal L2-norm (the canonical solution) to the

equation ∂bα = u. Gq can be expressed in terms of these canonical solution operators
at levels q and q + 1 and their adjoints ([3], p. 1577):

(25) Gq = (∂
∗
bGq)∗(∂

∗
bGq) + (∂

∗
bGq+1)(∂

∗
bGq+1)∗ .

This formula (including the proof) is analogous to the corresponding formula for
the ∂-Neumann operator ([11, 25]). Therefore, compactness of Gq is equivalent to
compactness of both ∂

∗
bGq and ∂

∗
bGq+1, and we shall prove the latter. Since projection

onto the orthogonal complement of ker(∂b) preserves compactness, we only have to
produce some solution with suitable estimates.

We first consider ∂
∗
bGq. Choose a ball B so that Ω ⊂⊂ B. Set Ω+ = B \ Ω.

Let α ∈ ker(∂b) ∩ C∞(0,q)(bΩ). By [8], Lemma 9.3.5., there exist ∂-closed forms α+ ∈
C1

(0,q)(Ω+) ⊂ W 1
(0,q)(Ω

+) and α− ∈ C1
(0,q)(Ω) ⊂ W 1

(0,q)(Ω) such that

(26) α = α+ − α− on bΩ

(in the sense of traces of the coefficients, but also in the sense of restrictions of forms;
i.e. the normal components of α+ and α− cancel each other out at points of bΩ).
Moreover

(27) ‖α+‖W 1/2(Ω+) " ‖α‖L2(bΩ)

and

(28) ‖α−‖W 1/2(Ω) " ‖α‖L2(bΩ) .
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Estimates (27) and (28) are from [8], Lemma 9.3.6. However, a comment is in order,
as only (28) is explicit there, while the estimate for α+ is given in terms of a ∂-closed
continuation of α+ to all of B. On B, only the (−1/2)-norm of this continuation can
be estimated. But this loss occurs across bΩ, and so does not affect the estimate on
Ω+. (27) is implicit in [8]; we sketch the argument (which is the same as for α−).

α+ is of the form α+ = (1/2)(Ekα − Vk), where the notation is the same as in
[8]. Ekα is an extension of α, based on an extension operator E for functions (i.e.
the coefficients), modified so that ∂Ekα vanishes to order k on bΩ ([8], (9.3.12a)
and (9.3.12b)). From the definition of E ([8], (9.3.8)), it is easily checked that
‖Ekα‖W 1/2(Ω+) " ‖α‖L2(bΩ). Vk is obtained as the solution of a ∂ problem on
B. It has the form Vk = ∂

∗
NB

q+1Ũk, where Ũk is a (q + 1)-form supported in
the intersection Ω+

δ of a thin tubular neighborhood Ωδ of bΩ with Ω+ (Ωδ is thin
enough so that the usual tangential Sobolev norms make sense). Ũk satisfies the
estimate ‖Ũk‖W−1/2(B) " |||Ũk|||W−1/2(Ωδ) " ‖α‖L2(bΩ); the first inequality is dual
to |||u|||W 1/2(Ωδ) " ‖u‖W 1/2(Ωδ), the second is (9.3.15) in [8]. Because ∂

∗
NB

q+1 lo-
cally gains a full derivative, we obtain that Vk is in W 1/2

(0,q) away from the outer
boundary of Ω+ (i.e. the boundary of B). Near the outer boundary, (1/2)-estimates
follow from the pseudo-local estimates for ∂

∗
NB

q+1 near the boundary of B (taking
‖Ũk‖W−1/2(B) as the weak global term). Putting these estimates together gives that
‖Vk‖W 1/2(Ω+) " ‖α‖L2(bΩ), and (27) follows.

Ω+ is not pseudoconvex, so ∂α+ = 0 does not automatically imply that α+ is in
the range of ∂. That it is follows from [8]: α+ has a ∂-closed extension to B, which
is in the range of ∂ on B. By restriction, α+ is in the range of ∂ on Ω+. Therefore,
we have on Ω+:

(29) α+ = ∂∂
∗
NΩ+

q α+ .

Similarly, on Ω,

(30) α− = ∂∂
∗
NΩ

q α− .

Note that both β+ := ∂
∗
NΩ+

q α+ and β− := ∂
∗
NΩ

q α− have vanishing normal com-
ponent on bΩ (as elements of dom(∂

∗
)). We also use here that compactness of NΩ+

q

(from Proposition 3.1) and of NΩ
q (because bΩ satisfies (Pq)) lift to higher Sobolev

norms (see [20], Theorems 2 and 2′, in particular the remark at the end of the proof
of Theorem 2 (page 466)). In particular, β+ and β− are in W 1 of the respective
domains (since α+ ∈ C1(Ω+), α− ∈ C1(Ω)), and so have traces on bΩ. We obtain
that on bΩ

(31) α = ∂bβ
+ − ∂bβ

− = ∂b(β+ − β−) ,

where we also use β+ and β− to denote the traces on the boundary. The elliptic
theory for the (real) Laplacian ( see for example [23]) gives

(32) ‖β+‖L2(bΩ) ≤ ‖β+‖L2(bΩ+) " ‖β+‖W 1/2(Ω+) + ‖∆β+‖W−1(Ω+)

= ‖∂∗NΩ+

q α+‖W 1/2(Ω+) + ‖∆∂
∗
NΩ+

q α+‖W−1(Ω+)

" ‖∂∗NΩ+

q α+‖W 1/2(Ω+) + ‖α+‖L2(Ω+) .
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Here ∆ acts coefficientwise on forms. In the last estimate, we have used that !q

also acts as ∆ coefficientwise on forms (up to a constant factor). The corresponding
estimate for β− is

(33) ‖β−‖L2(bΩ) " ‖∂∗NΩ
q α−‖W 1/2(Ω) + ‖α−‖L2(Ω) .

Combining (31) with estimates (32) and (33), we obtain for the canonical solution
operator ∂

∗
bGq:

(34) ‖∂∗bGqα‖L2(bΩ) " ‖∂∗NΩ+

q α+‖W 1/2(Ω+)

+ ‖α+‖L2(Ω+) + ‖∂∗NΩ
q α−‖W 1/2(Ω) + ‖α−‖L2(Ω) .

Both NΩ+

q and NΩ
q are compact (Ω+ satisfies the assumptions in Proposition 3.1).

Therefore, ∂
∗
NΩ+

q and ∂
∗
NΩ

q are compact in W 1/2
(0,q)(Ω

+) and W 1/2
(0,q)(Ω), respectively

(again from [20]).The embeddings W 1/2(Ω+) ↪→ L2(Ω+) and W 1/2(Ω) ↪→ L2(Ω)
are also compact. (34) was derived for α ∈ C∞(0,q)(bΩ). But C∞(0,q)(bΩ) ∩ ker(∂b) is
dense in ker(∂b) ([8], Lemma 9.3.8). In view of (27) and (28), (34) therefore implies
that ∂

∗
bGq maps bounded sets in ker(∂b) ⊂ L2

(0,q)(bΩ) into relatively compact sets in
L2

(0,q−1)(bΩ). In other words, ∂
∗
bGq is compact on ker(∂b), hence on L2

(0,q)(bΩ).
We now consider ∂

∗
bGq+1. bΩ also satisfies (Pq+1) (because (Pq ⇒ (Pq+1)). Assume

first that 2q ≤ n − 2. Then bΩ also satisfies (Pn−1−(q+1)) = (Pn−2−q) (since q ≤
(n − 2 − q)). Consequently, the previous case applies (with q replaced by (q + 1)),
and ∂

∗
bGq+1 is compact. Since we may assume without loss of generality that q ≤

(n− 1− q), i.e. 2q ≤ (n− 1), in proving Theorem 1.4, the only case left to consider
is 2q = (n − 1). We argue as follows. (∂

∗
bGq)∗, the canonical solution operator to

∂
∗
b (as an operator from (0, q)-forms to (0, q − 1)-forms), is compact because ∂

∗
bGq

is. Because q − 1 = n − 1 − (q + 1), the symmetry discussed in section 5 yields a
compact solution operator for ∂b (as an operator from (0, q)-forms to (0, q+1)-forms).
Therefore, the canonical solution operator ∂

∗
bGq+1 is compact.

The proof of Theorem 1.4 is complete.

5. Appendix

In the last step above, we need a version of Koenig’s tilde operators that intertwines
∂b and ∂

∗
b without the 0-th order error term that occurs in [17]. A reference for

precisely the statement we need seems to be hard to pinpoint in the literature, and
we give a brief discussion of a suitable construction. No originality is claimed. Let Ω
be a smooth bounded pseudoconvex domain in Cn. For 0 ≤ q ≤ (n − 1), define Tq:
L2

(0,q)(bΩ) → L2
(0,n−1−q)(bΩ) via

(35)
∫

bΩ
β ∧ α ∧ dz1 ∧ · · · ∧ dzn = (β, Tqα)L2

(0,n−1−q)(bΩ) ,

for all β ∈ L2
(0,n−1−q)(bΩ). Tq is conjugate linear and continuous.

For q ≤ (n− 2), α ∈ C∞(0,q)(bΩ), and β ∈ C∞(0,n−q−2)(bΩ), we have

(36) (β, Tq+1∂bα)L2
(0,n−q−2)(bΩ) =

∫

bΩ
β ∧ ∂bα ∧ dz1 · · · ∧ dzn .
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In the integral on the right hand side of (36), we can replace ∂bα by dα (the extra
terms, when wedged with dz1 ∧ · · · ∧ dzn, vanish on bΩ). Now integrate by parts to
obtain

(37) (−1)n−1−q(β, Tq+1∂bα)L2
(0,n−2−q)(bΩ) = (∂bβ, Tqα)L2

(0,n−1−q)(bΩ) .

Because C∞(bΩ) is dense in dom(∂b) in the graph norm (by Friedrichs’ Lemma, see
e.g. [8], Lemma D.1), (37) holds for α and β in dom(∂b) of the respective form levels.
It then follows that Tqα ∈ dom(∂

∗
b), and that

(38) (−1)n−1−qTq+1∂bα = ∂
∗
bTqα .

We next compute Tq in a special boundary chart. Let β =
∑

M∈In−1−q
βMωM ,

u =
∑

J∈Iq
uJωJ . Then (from (35))

(39) (β, Tqu) =
∑

M∈In−1−q
J∈Iq

∫

bΩ
βMωM ∧ uJωJ ∧ dz1 ∧ · · · ∧ dzn .

Define the function h by ω1 ∧ · · · ∧ ωn−1 ∧ dz1 ∧ · · · ∧ dzn = hdσ on bΩ. Then (39)
gives

(40) (β, Tqu) =



β, h
∑

M∈In−1−q
J∈Iq

εMJ
(1,··· ,n−1)uJ ωM



 ,

i.e.

(41) Tqu = h
∑

M∈In−1−q
J∈Iq

εMJ
(1,··· ,n−1)uJ ωM ,

where εMJ
(1,··· ,n−1) are the usual generalized Kronecker symbols. Then

(42) Tn−1−qTqα = h
∑

M∈Iq
J∈In−1−q

εMJ
(1,··· ,n−1)(Tqα)J ωM

= |h|2
∑

M,K∈Iq
J∈In−1−q

εMJ
(1,··· ,n−1)ε

JK
(1,··· ,n−1)αK ωM

= |h|2
∑

M∈Iq

(−1)q(n−1−q)αM ωM = (−1)q(n−1−q)|h|2α .

Note that |h| is a (nonzero) constant that is globally defined: ω1 ∧ · · ·∧ ωn−1 ∧ dz1 ∧
· · · ∧ dzn = aω1 ∧ · · · ∧ ωn−1 ∧ ω1 ∧ · · · ∧ ωn = a(const.)(∗ωn) = a(const.)dσ (when
pulled back to bΩ), with |a| = 1 and ∗ the usual Hodge ∗-operator, see for example
Lemma 3.3 and Corollary 3.5 in chapter III of [26]. Thus (42) provides T−1

q with
T−1

q = (const.) Tn−1−q. In particular, Tq is an isomorphism between the respective
spaces. Moreover, (38) gives ‖∂bα‖ ≈ ‖∂∗bTqα‖ and, when combined with the fact
that Tn−1−qTqα = (const.)α, also ‖∂∗bα‖ ≈ ‖∂bTqα‖.
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Now let α ∈ Im(∂b) ⊆ L2
(0,q)(bΩ). Then, by (38), Tqα ∈ Im(∂

∗
b), i.e.

(43) Tqα = ∂
∗
b∂bGn−1−qTqα .

Set γ = (−1)n−1−qT−1
q−1∂bGn−1−qTqα. Then (from (38))

(44) Tq∂bγ = (−1)n−1−q∂
∗
bTq−1γ = ∂

∗
b∂bGn−1−qTqα = Tqα ,

that is, ∂bγ = α. So if the canonical solution operator to ∂
∗
b , ∂bGn−1−q, is com-

pact, we have produced a compact solution operator for ∂b at the symmetric level.
Consequently, the canonical solution operator at this level, ∂

∗
bGq, is compact.

Acknowledgment

We are indebted to Ken Koenig for pointing out the observation in his paper [17] of
the symmetry in form levels for ∂b with regard to compactness and subellipticity. He
also found some oversights and inaccuracies in an earlier version of this manuscript.

References
[1] H. Ahn, Global boundary regularity for the ∂-equation on q-pseudoconvex domains, Math. Nachr.

280 (2007), 343–350.
[2] H.P. Boas and M.-C. Shaw, Sobolev estimates for the Lewy operator on weakly pseudoconvex

boundaries, Math. Ann. 274 (1986), 221–231.
[3] H.P. Boas and E.J. Straube, Sobolev estimates for the complex Green operator on a class of

weakly pseudoconvex boundaries, Comm. Partial Differential Equations 16 (1991), 1573–1582.
[4] , Global regularity of the ∂-Neumann problem: a survey of the L2-Sobolev theory, In

Several Complex Variables (Berkeley, CA, 1995–1996), Mat. Sci. Res. Inst. Publ. 37, Cambridge
Univ. Press, Cambridge, 1999, pp.79–111.

[5] D. Catlin, Necessary conditions for subellipticity of the ∂-Neumann problem, Ann. of Math.
117 (1983), 147–171.

[6] , Global regularity of the ∂̄-Neumann problem, In Complex Analysis of Several Variables
(Madison, Wis., 1982), Proc. Sympos. Pure Math. 41, Amer. Math. Soc., Providence, RI, 1984,
pp.39–49.

[7] , Subelliptic estimates for the ∂-Neumann problem on pseudoconvex domains, Ann. of
Math. 126 (1987), 131–191.

[8] S.-C. Chen and M.-C. Shaw, Partial Differential Equations in Several Complex Variables, Stud-
ies in Advanced Mathematics, volume 19. American Mathematical Society, 2001.

[9] J. P. D’Angelo, Inequalities from Complex Analysis, Number 28 in The Carus Mathematical
Monographs. The Mathematical Association of America, Washington, D.C., 2002.

[10] R. Diaz, Necessary conditions for subellipticity of !b on pseudoconvex domains, Comm. in
Partial Differential Equations 11, (1986), 1–61.

[11] G.B. Folland and J.J. Kohn, The Neumann Problem for the Cauchy-Riemann Complex, vol-
ume 75 of Ann. of Math. Stud. Princeton University Press, Princeton, New Jersey, 1972.

[12] S. Fu and E.J. Straube, Compactness of the ∂-Neumann problem on convex domains, J. Funct.
Anal. 159 (1998), 629–641.

[13] , Compactness in the ∂-Neumann problem, In Complex Analysis and Geometry (Colum-
bus, OH, 1999), Ohio State Univ. Math. Res. Inst. Publ. 9, de Gruyter, Berlin, 2001, pp.141–160.
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