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Abstract. We construct infinite measure preserving and nonsingular rank one 78-
actions. The first example is ergodic infinite measure preserving but with nonergodic,
infinite conservative index, basis transformations; in this case we exhibit sets of increasing
finite and infinite measure which are properly exhaustive and weakly wandering. The next
examples are staircase rank one infinite measure preserving 7% _actions; for these we show
that the individual basis transformations have conservative ergodic Cartesian products of
all orders, hence infinite ergodic index. We generalize this example to obtain a stronger
condition called power weakly mixing. The last examples are nonsingular 7% _actions for
each Krieger ratio set type with individual basis transformations with similar properties.

1. Introduction. In this paper we construct families of ergodic in-
finite measure preserving and nonsingular free actions of Z¢ on the real
line. The method is by the natural generalization of the “cutting and stac-
king” constructions for integer actions. This method has been used in Park—
Robinson [PR] and Adams [A] to construct ergodic finite measure preserving
72_actions with varfous properties, but we do not know of its use for infinite
measure preserving 72_actions. Recently there has been much interest in
constructing examples of ergodic actions of groups other than the integers;
cf. [Sch] and the references therein.

To simplify the exposition we first exhibit the examples for the case
when d = 2; the changes needed for general d are in general straightforward.
The first examples we construct are the analogues in 72 of the well-known
ergodic infinite measure preserving transformation of Hajian and Kakutani
[HK2]. In this case we study the weakly wandering sets for these actions,
and introduce the notion of properly exhaustive sets, a notion that becomes
important in Z2-actions. We exhibit properly exhaustive weakly wandering
sets of finite increasing measure and of infinite measure.

However, it is easy to see that for the ergodic 72-actions mentioned
above, the basis transformations (individual horizontal and vertical integer
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actions) are not ergodic, though we show that all their Cartesian products
are conservative. In [AS], Adams and Silva constructed rank one mixing
finite measure preserving Z%actions, d > 2. In Section 4 we modify the
staircase Z? constructions of [AS] to obtain infinite measure preserving Z°-
actions. For these actions the basis transformations are indeed ergodic and
also have continuous L™ spectrum, hence are weak mixing; in fact, we show
that all their Cartesian products are ergodic, i.e., have infinite ergodic index.
(In infinite measure, ergodicity of the k-fold Cartesian product does not
imply ergodicity of the (k + 1)st Cartesian product [KP].)

The difficulty in the infinite measure preserving case is that there is
currently no formulation of a pointwise ergodic theorem for Z%-actions in
infinite measure, as the counter-example of Brunel and Krengel [Kre], p. 217,
prevents the obvious formulation. Also, in infinite measure, the weakly wan-
dering sets preclude a useful notion of mixing (the notions of mixing for
infinite measure in the literature do not imply ergodicity, and in the exi-
sting examples ergodicity has to be shown separately).

Next, we modify the construction of the infinite staircase actions to ob-
tain a new action called a multistep action, where the earlier proof applies
and shows that the action is power weakly mixing, a condition stronger than
having every nontrivial element of the action of infinite ergodic index.

The last section constructs, for each 0 < A < 1, conservative ergodic free
nonsingular type III, Z%-actions. For the case of 0 < \ < 1 we prove that
the basis transformations have infinite ergodic index. For the case A = 0 we
show that the basis transformations are weakly mixing.
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tains parts of the undergraduate theses of Touloumtzis '96, Muehlegger '97
and Raich '98. Support for the project was provided by National Science
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manuscript and many suggestions and remarks which improved an earlier
version of this paper.

2. Preliminaries. We let X denote a finite or infinite interval, B the
Borel o-algebra in X, and 4 Lebesgue measure. A Z%-action is a measurable
map T : Z¢ x X — X such that if e is the identity in Z¢ then for a.a.
€ X, T¢(z) =z, and for all p,q € Z°, TP(T9(x)) = TP9(x) a.e. We write
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i i i ting
i . An action of Z¢ is determined by d commu
Tr(E) e o T(p,?(l*of"o) ..., T©-0.1)  The action is free if wi{z -

basis transformations 0. ALl sur actions will be free by definition or

TP(z) = = for some p # e}
struction. ‘ o )
COm’I‘h action of T on (X, B, u) is measure preserving 1f. for every p € Zd
d alleA c B, u(TPA) = p(A). The action is nonsingular if for every p € ?
:gd all A € ‘é u(TPA) > 0 if and only if u(4) > 0. éslrt}l:er, IE‘B ergg ;i
, i = Aforall pe€ then p =
i 1l measurable sets A, if TPA . : ‘ .
" il)z)a— 0. It is properly ergodic if it is ergodic and no orbit of. a single pon.lt
h co;ers. the whole space X. As our measures are nonatomic, our ergodic
a.e. .
tions are properly ergodic. . '
- 1A t W € B with u(W) > 0 is wandering under the act%on T if for ?,11
€ SZed with p # ¢, we have u(TPW NTIW) = 0. An action is conservatw?
]iof,i?c has no wandering sets. A set W is weakly wandem’ng((C)ZfiJ a %e;%u;;lc%})pi} <())
i i have p(TP™ n = 0.
ts of Z& if for all m,n € Z with m # n, we ‘ - (
ieslzf I;/V which is weakly wandering on a sequence {pi} of elements of Z* is

ezhaustive if -
u(x -U T’“W) —0.
i=0

We say that the set W is properly ezhaustive if t};e seque}rllce {pi} is nfot
i i here is no p € Z* such that p; = n;p tor
nerated by a single element, i.e., t ! ‘
gsme sequence n; € Z. We will frequently write e.w.w. for exhaustive weakly
wandering. ‘ . .
If the action has some element p that is ergod1§ as a Z—act1or22by t[Jolfl]
there will be an e.w.w. set for the action of p, a‘nd trivially f;)r thfa —lé‘icr lthé
however. this set will not be properly exhaustive for the Z-action. ko

examples below we construct properly e.w.w. sequences. , »
e
If T is a nonsingular action, for any z € X and any p € Z%, we

o) = (2T ).

. . . ‘o
The notion of ratio set was introduced by Krieger [Kri], who' pr;)lved ;ts bas
properties. The ratio set of an action T, denoted by r(T'), is the se

r(T) = {t € [0,00) : Ve > 0, VA with u(4) >0,
Jp € 7% such that p(ANTPAN{z: wp(z) € Ne(t)}) > 0},
where N, (t) = {s > 0: |s — | < e}. Krieger showed (cf. [Kri], [HO]) that
€ - jatiy

. . t
the ratio set of an ergodic action is invariant und'er change to anfe};q@\tilv?%zlzs
measure, and r(T') \ {0} must be a multiplicative subgroup o .

)

allows four possibilities:
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L. r(T) = {1},

2. r(T) = {0,1},
3.7(T)={0}u{M:0<A<1, ke 7},
4. r(T) = RT.

The first possibility is called #
equivalent sigma-finite invariant

it is type M., otherwise type II
respectively.

ype 11 and these are actions that admit an
measure; if the invariant measure is infinite
1. The others are types Illy, IIIy and 1114,

Given a nonsingular transformation T, an L™ eigenvalue is complex
number A such that for some nonnul] function f in L%, f (Tz) = Af(z) a.e.
Since the L* norms of fand foT are equal, eigenvalues must have modu-
lus 1. If T is ergodic then |f| must be constant a.e. Further, T is said to be
weakly mizing if for every finite measure preserving ergodic transformation
(Y,v,9), (X XY, pux v, T x S) is ergodic. These notions for the case of non-
singular transformations were studied in [ALW], where it is shown that T
is weakly mixing if and only if T is ergodic and its only L>° eigenvalue is 1.

We say that a transformation 7" has continuous spectrum if it is ergodic
and its only L eigenvalue is 1.

The following lemma is wel

1 known for finite measure preserving trans-
formations, but we include a p

roof for the general case.
LEMMA 2.1. Let T be q nonsin

gular transformation,. If T has continuous
L™ spectrum, then for alln € N,

T" has continuous L>® spectrum.

Proof. Suppose that there exists a function f ¢ [
Af, where |fl = 1 and [A] = 1. Set F = ffoT ... foqn-1, Since
FoT = XF, it follows that \ L. It remains to prove that T is ergodic.
Suppose the contrary. Then it is easy to see that there is a measurable subset
A so that X is the disjoint union of ATA,... T" 14 for some r < n. We
set H = Y71 oFXpk 4, where o = 2mi/r and X7k, is the characteristic
function of T*A. Since H o T — aH, we have o = 1, a contradiction. m

If the basis transformations of a Z9-action are weakly mixing then by
Lemma 2.1 they are totally ergodic and by the same proof as in [AS] any
d-dimensional subgroup of 74 acts ergodically.

IfT xTis ergodic then it is clea

such that fo7™ =

r that T must have continuous L
spectrum. However, in the infinite measure preserving and nonsingular cases

the converse is not true [ALW], [AFS]. A nonsingular transformation T is
said to have infinite ergodic indez if for all k, the Cartesian product of k
copies of T is ergodic; it follows that all products are also conservative,
Kakutani and Parry [KP] constructed the first examples of infinite measure
preserving transformations with the kth Cartesian product ergodic but the
(k + 1)st not ergodic, and of infinite ergodic index. Infinite conservative

F
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the first version of this paper was
) . analogous way. After m 4.9).
-~ de?'nehdcl(;ln:gined the proof of Theorem 4.3 but not ;f rIf‘};eOrrle:; G 2s
ic h i
tronge‘:;ondition was introduced in 1[1DG1\/IS]. Ane EZ:C:t\IO{I;} ;gl E T
as L L gr , -XT
. kly mizing if for all g3, ] ‘ ¢
said to b'e pg{):;rll;eaanzf power weakly mixing transformaft1011h1;2ttbisllll)f(1;;ei
o erg'Od'lC'dex An infinite measure preserving transff)rmatlgnen <hown that
ergOdllc mixin,;g is constructed in [DGMS]. .Recently,‘ it hdas tfut is not power
ey r'nts an integer action that has infinite ergodic index
there exis
ixi 82]' ; ygid if there exists
weakly mixing [AF . is said to be partially rigid if the
i transformation T'is sal hat for all
A>n %ns;lrllgiunl?rreasing sequence Ty, and a constant R(Z)Oasnlif};;ma(w) - R
o 77A f,ﬁnite measure, iminfp o0 p(I™ANA) 2 np ‘allv rigid under the
sets OAFS] it was shown that if T and S are partially dg;;hat artially
ae o | ence r, then T x S is partially rigid under TTXSQ] it follows that
Sfﬂ?l(f tbe(ilusforma:ions are conservative. As remarkefl ln'[ h )
?lgr} ) I‘aartially rigid then it has infinite co.nservatlve 'm tix. ntoger Iattice:
* VIV? . the following notation for certain squares 1n the
e use
SQ(h) = {(a,b) :a,b€Z, 0 <a<hand0 S b< f;;r-ction .
A id G of length h is a colle . ‘
i ative integer h, a grid ) i als in this
P ¢ intervals in R* indexed by SQ(h)-clements éﬁ‘n ginotsrgoc oG-
i;sé)zlrnare assumed left closed and right C;)Pen-) Tl‘lhﬁz (?C(}J)e?che locati(;n of I,
. ici interval I € G, we ca . \
SQ(h) f;s mg’(l?a,t)' FOIIZ Oi%i?i 7). A grid G partially defines tranf(})lr;nat;(i)(f)lj
z, = > g ? . . Oca
arz;i,oc)i(? ndeT(O’l)]in the following way. Gwen‘an mterval‘I ? Sﬂiv::e oo that
{ ) 3nﬁ T on I to be the orientaion preser\}fllflgt al exists T(10)
i,7), define . i i+ 1, 7); if no such interv
: h location (¢ +1, 7); i .
ronds 1 %0 t(?eﬁlrlllet:gr\;lmv;’ll:trlyolet 71 take an il(}tlf;rval I to the (in;ci(;rev(?l with
1 . ) | , . e .
remains 'e+ 1); again if no interval exists T( rema%nslunG.ven —
location G(Z,Jd o ,b e two grids of length g and h respectively. 1t o
n fe
gatg:ritintezers @ and b such that maLX{G})?J’ b0+<g }i <<h§ chfaoy <j<gis
. : y or =
7 b Glih?):H(a‘*'Z,b"*_J" ) - O ()<z<gand
Sc(oisgn;fd(;)i[n I} located at (a,b), if G'(4,7) C G(i,g) for 0 <
< ] < 3 a‘nd .. _ I 1 A
he T%’O)(G'(i N =GG+175, TOGC N =G 67+1)

!
We denote the location (a,b) by Locg(G').

inde
written (

i si family of actions
i tion we define a simple
2 skyscraper. In this sec : O kly
h-31.1 éxfibis};equences on which [0, 1) is proper.l'y exI};all:,;ctl;erﬁ i
M 1Cd ing. This Z2-action is analogous to the Ha31ap~b21f e 0
‘[’;?11;2]6“_“%6 it sweeps out all the spacers in each grid before p
sinc

the next grid.
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Weakly wandering sets for integer actions were introduced in (HK1] by
Hajian and Kakutani who showed, among other things, that ergodic in-
finite measure preserving transformations admit weakly wandering sets of
positive measure. In [HK2], Hajian and Kakutani constructed an example
of an ergodic infinite measure preserving transformation with an exhau-
stive weakly wandering set of finite measure. The sequence under which the
set is exhaustive has interesting arithmetical properties and this has been
studied e.g. in Eigen-Hajian-Kakutani [EHK]. In [JK], Jones and Krengel
showed that every ergodic infinite measure preserving integer action ad-
mits a weakly wandering set that is exhaustive, though possibly of infinite
measure. In [HI], Hajian and Ito showed that an arbitrary group of meas-
urable nonsingular transformations admits an equivalent finite invariant
measure if and only if it does not admit a weakly wandering set of positive
measure. It remains an open question whether every ergodic infinite meas-

ure preserving Z%-action admits a properly exhaustive weakly wandering
set.

3.1. Construction. To define the basis transformations T1? and 7(0.1)
we first construct inductively a sequence of grids G, of length h,,. Let hg = 1
and Go = {[0,1)}. Given G,, we set h,,; = 4h,, and divide each interval
interal I € G into four equal parts: I = U?:o I; enumerated from the left
to the right. Now set Locg,,,(lo) = Locg, (1), Locg,,, (I1) = Locg, (I) +
(0,hn), Locg,,,(I2) = Locg, (I) + (hn,0), and Locg,,,(13) = Locg, (I) +
(hn, hy). Finally, we consider the elements of S Q(hn+1) which do not yet
have intervals assigned to them; to these we assign a spacer, a new interval
chosen from R of the same length as the previous ones. We choose each
spacer interval so that it is disjoint from all previously chosen spacers and
from [0, 1), and that it abuts on the previously chosen spacer (or, if it is the
first spacer, so that it abuts on the unit interval).

The construction is a process of “cutting and tiling”, analogous to the
“cutting and stacking” with which rank one Z-actions are constructed. It
is easy to see that the number of intervals in a grid G, is 4?" and that
the length of each interval is 1/4". Thus the measure of the union of the
intervals within that grid, which we denote by Gy, is 4™. Thus, as n — oo,
Gy — X =R".

Next, we define our transformations 719 and TV op a grid G, as
explained earlier. One can check that 719 and 71 are defined everywhere

asn — oo. In this section, as well as in Section 4, all grids consist of intervals
of the same length.

THEOREM 3.1. The Z2-action T defined by the above construction is
measure preserving and properly ergodic. The basis transformations T(0:1)
and TWO) gre not ergodic but are partially rigid under the same sequence

STV SSB eT
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) ) basis trans-
rn = hn, hence the Cartesian products of any finite number of

formations s conservative.

Proof. It is clear that intervals are sent to intervals of the same length

and since the intervals in the union of the grids generate, the action is

measure preserving.

show that for any two sets A and B of positive rr}easure, ‘there
exisljso :tvn‘fl:ement ge 72 such that p(TYANB) > 0. There gzl(s]t)s >a grgd (CIJ)n
and intervals I, J € G, such that p(ANT) > 0.5u(1) and ,L;( 0 th,atuT is,
Let g = Locg, (J) — Locg, (I). Clearly, u(T9AN B)‘ > O.d t fo orviztive |
ergodic. Since p is nonatomic, T is properly ergoclhoc) e.m conse -

To show that T7(1.9) i partially rigid, since T (1.0) is measure g)reselr'vmtg(;
it is enough to show only the first condition (the same argumer}ll app 1§s Lo
7). Moreover, by [AFS], Lemma 1.2, it suffices to show t —e ;‘Leslf1 o
an algebra that approximates all sets of finite measure. Lei rln/4— Ngteozhat
n > 0. Let A € Gy be an interval for sognoe k> 0(’1a0§ld let n = /4 e
in the grid Gn41 for n > k, T(h"’O)G%’ ) = Gy,") and for (4,7) € (4),

p,(Gg 9 A A) = 1u(A). (The first equality is understood to mean

T (GO0 (Lo, (GO0 + (5,) = G0 (Loca, ., (G + (.3)

n

for all 0 < i,j < hy; similar equalities later in the paper are interpreted in
—_— b —_ )

the same way.)

Therefore " 1
(@D A0 Aw) > pTEO(G) 1 A) A (G 0 A) 2 G4

1 1 — 0,1 4 and

To show the basis transformations are nonergodic, let A = | /< )h‘k_l.

B = [3/4,1). Let n > 0 be an integer. Choose the first k such that n
For each I € G, I C A, we have T € Gy and

Locg, (T™OI) = (2a +n, 2b)

= (2c+1,
for some integers a and b. Now if J C B, J € G then LOCGk(SzJO))I m(?lc: 0
2d + 1) for some ¢ and d. As 7O € Gy it follows that T ’
Also. T is nonergodic by the symmetry of the construction. =

r technique to that in [HK2] tlo
} on which the set W = [0,1)
(0,0). Given i > 0, We

3.2. The sequence {w;}. We use a simila
construct a sequence {w; € 72 i = Q, 1,...
is properly exhaustive wea%dy wandering. Let wo =
consider its quartic expansion:

i = 4%y + 4y + ... + 4P,
ing on 1.
where ¢; = €;(i) € {0,1,2,3},for j=0,1,..., k and some k depending
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Now we assign to each €; a d; as follows:

(0,0) ife; =0,
5 ‘(5(6) (2,0) ifé‘j:l,
J = Y% = .

(0, 2) if €5 = 2,

(2, 2) if € 23,

Finally, define the weakly wandering sequence w; by

wi = 4% + 418 + ... + 4¥5,.
THEOREM 3.2. W s weakl

y wandering and properly exhaustive along the
sequence {w;}.

Proof. The proof is inductive
following two conditions hold:

(1) the sets {T®iW : 0 < i < 47

(2) Gy =UZg ' Tow.

This is clearly true for n = 1. We show that (1) and (2) hold for n + 1.
Actually,

on the hypothesis that, for n > 0, the

} are pairwise disjoint, and

qntl_q 3 4n 1 3
U = Jres (Y rew) < Jrose; - ar,
i=0 j=0 i=0 i=0

as SQ(hn11) = UI_y(SQ(2- 4m) +4%3;). To show (1), recall that p(W) = 1,
#(Gny1) = 4" and T is measure preserving. Then

4ntl_y 4nt1_q qn+l_j
o wTewy= 3 t=ulCr)=u( J TOW).
i=0 i=0 i=0

3.3. Sets of increasing and infinite measure. In [C], Crabtree describes
exhaustive weakly wandering sets on the example of Hajian and Kakutani
[HK2] whose measures are greater than 1; in particular, he details the con-

struction of both an increasing sequence of e.w.w. sets

and an infinite me-
asure e.w.w. set.

3.3.1. Properly exhaustive weakly wandering sets of increasing measure.
For any integer n, we can take W =G,. If we let
wi = 47(004° + 5141 + ... 1 54k)

this is a properly exhaustive w.w. sequence for W. Thus we have the in-
creasing sequence Gy, Gi,... of ew.w. sets; the proof that each is e.w.w. is
identical to the proof of Theorem 3.2, with each dimension scaled up by 4™,

3.3.2. An infinite measure properly erhaustive weakly wandering set.
€ construction of an infinite measure weakly wandering set

’

Th Wy is in-

A
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in wi = i Wh-1, let W, =W,_1 U
i n n. We begin with Wy = [0,1/2). GIVGH 1, Vi
3‘1(1’(‘::1/‘2/%)(;4/’”_1. Note that W, is well defined in G,, and p(W,) = 2,u(Wn_.1).
This construction makes translations by (h,/2,0) and (hyn/2, hy /i) ﬁm-
admissible in {w;} but admits translations by (1, h,/2) and (1,0). We define
a sequence v; with binary coding of i:
1= 2060 + 2161 +...4+ ZkEk,

where ¢; € {0,1} for j =0,1,...,k and
5 (0,0) ifeg; =0,
7700,2) ife=1.

Put v; = 4959 +416; + . . . + 4F6;; the weakly wandering sequence w; is given
; =
by

woy; =v; and  waq1 = v; + (1,0).

4. Infinite measure actions. In this section we first .rnod%fy the finite
measure preserving staircase actions of [AS] to construct 1nﬁ'mte meas‘urﬁe,
measure preserving Z2-actions for which the basis transformations ha(;re ﬁln (i
nite ergodic index. It is possible to choose a sequence {cnl} .of cuts (ash z irlllcfei

i i f [AS] so that the resulting space ha; -
below) for the staircase action o ne ¢ fas 1
i i i the sequence {c,} will be un .
nite measure; however, in this case ' e mboundec.
if liminf ¢, = oco. While one could modify
Our methods do not apply if liminf ¢, 00 ud modily the
i btain liminf ¢, < oo, we in fac
construction on a subsequence to o ! | acr denne &
i ircas i hat has infinite measure but with a
new family of staircase actions t o but with a boundec
; ing techniques from [AFS] we show tha
sequence of cuts; adapting : A, ot
i i infinite ergodic index. In the se
the basis transformations have in : second
the section we extend this construction to the multistep actions which we
show are power weakly mixing,.

4.1. Staircase actions. Given a positive integer c, a grid H is dzﬁr;?stz
be an infinite staircase c-cut of a grid G, qf length g, if C(?iCtH an
grid of least size that contains (c 4+ 1)? copies of G located a

(2ig +i(i ~ 1)/2 + 14,259 + j(§ — 1)/2 + 1))

M (’L’J)
for (i,7) € SQ(h). The copy at this location is denoted by Gn’. The length
, 2

of Hish=2(c+1)g+clc—1)/24c". . B

As before, we define on the grid G two commutlpg tramsforr'nat1(})lns7 .
as the translation mapping G(¢,7) onto G(i + 1,]),. f(?r 0< fLG<<z .
0 < j < h; and TOY as the translation mapping G(’L,‘j) ontp )] t )
0< j< h,— 1 and 0 < ¢ < h. Figure 1 shows an infinite staircase 3-cut.

|




G

e G2
Go®

(1,2) ng,z) G’(’a,2)
G(02) G

(3,1)
G’goyﬂ G,f“”' G,(|2'”, lG"
E

G,fo'o) G0 G20 , G0

ci‘|+1

Fig. 1. An infinite staircase 3-cut

An infinite staircase action is defined by giving a sequence of positive

numbers {c,} and a sequence of grids {Gy} such that Gy = {[0,1)} and

Gp+1 is an infinite staircase c,-cut of G,.

Let h,, denote the length of G,,. Then ho =1 and
(1) hns1 = (260 4+ 1Ry + cp(cn — 1)/2 + 2.

It is clear that 7(1,0) and 7(

%1) 50 defined commute, and that the stair-
case Z2-action is measure prese

rving and ergodic.
PROPOSITION 4.1. Let T pe a
sequence {cn} of cuts. Then T is

Proof. It suffices to consider the worst case ¢, = 1 for all n, From (1) we

deduce that h,,; > 4k, > gn+1 If I € G, is an interval then w(I) =1/4".
There are h2 intervals in Ghn, s0 u(G,) = hZ/4n > 4n. o

n infinite measure staircase action with
defined on an nfinite measure space.

If I € G, is an interval and 0 < ¢ < h,, then let A(1,t), the t-
under I, denote the collection of all intervals J € Gy, such that

Locg, (J) = Locg, (I) — (4, 4)

triangle

where

1 T O 4 SR T 1

e Y Sy s Iy
e = & TR e LRI A TTONT "

(Depending on the location of I, sometimes it may not look like a proper }
epe

triaE‘gle.)oncreteness in the remainder of this section we will assume that
or ¢ ,

= i imi work for ¢, > 2.
c 3 for all n, but one can verify that similar arguments wo n
(]

3 ) taircase action with ¢; = 3 for
A 4.2. Let T be the infinite measure s ' : A
L]iMSA Given positive intégers n and t there exists an integer lI tl(Z; t)
11”01 —ch. that if I and J are any two intervals in Gy, with J € A(I,t) then
>0 su

1
w(THOI N J) > Tgh)-
Proof. For all k > 0, G441 will contain 16 copies of G4 where for i

iy that
(i,7) € SQ(3+1), u(Gﬁl;’,)c) = %M(Gmuk). Observe tha

T(2h"+k’0)G£LOfr(2 _ G(nl-;—(;c)’

T(2hn+k:0)GS—£c) — T(—I,O) GELQ_;BC),
- 1,1

G ~ 76l

Using this idea, we set

t—1
l= Z 2hn+k~
k=0

hat 0 <
Let J ¢ A(l,t) and set (z,y) = Locg,(I) — LOCG"t(J]_)J En})te:t ; o
y < z). Define intervals Ij recursively for 0 < k < t. Let Iy

< y, let
p(Io N T@Y) J) = p(J). Assume that Iy has been defined. If k + 1 < y, le

Tou1 = T(2hn+2k,0)( I N Gioilgk)' Then

1
r— y—(k+1 .
Tl N TE D= gy > ()
(1,0)
Ify<k-+1<az,let fyq =Tl (R, NG, 75 ). Then
1
Iy NTE DO ) > Tt A(I)-
(0,0)
fez<k+1<tlet I = T(2hn+26,0) (I N Gn+2k)' Then
1 7)
pler1 NJ) 2 ey ild)-

1 .Also, , c TWOT. »
Thus I; has been defined and pu(f; N J) > mp(J). Also .t; s
3 ] ) tion with seque ‘
M 4.3. Let T be an infinite staircase ac : . v
c ;r {};ECI)’ZZZ the basis transformations T gnd T have infinite ergodi
n = 3.
index.

Proof. Let £ > 0 and S be the Cartesian product of[ k copéelsboj ;Z;ts .
By symme.try it suffices to show that S is ergodic. Let A’ and

(1,0,
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g(})lsitive measure in the product space and let y; denote product measure

oose intervals I; and J;, ¢ = 1 k, in some gri '
e rid Gy, such

I'=Lx...xIyand J=Jy x ... x Jy, ’ ¢ m such that for

(A N I) S8 g mBNJ) b
He(1) 6 pi(J) 6
By taking a finer approximation in the grid G,,_;, and using the struct
of the 16 copies of G,,_1 in G,,, we may assume tl’lat for each 1 =1 . uII‘ce
Ji € A(L;,t;) for some t; (since any interval in G%O’O) is in the t-t;.iér;:gle;

of any interval in G for some t). Let A=A NI, B=BnNJ, and

t=max{t;:1=1,...
et {ti y+-->k}. Then t < h,,. Choose § = 1/16¢. For any n > m

n—1

Fn:{l,..,,H(ci_‘_l)Q}

i=m
and label the copies of G, in G,, with integers from I,. To find a finer

approximation within I, choose a sufficiently la. i
Rppromaion witk y large n > m such that there is

I'= U Iz where U' C T
uel’

;o tha;l; m (I'A'A') < %dkuﬁ (I). Further, each I3 is of the form Iz=1,x...x
w \g ere I,u, is 11; I; and in the u; copy of G,, in G,,. Similarly, there exists

- a subset V < r: 'where J" = Uy J5 so that p(J' A B) < L6ku (J)
Using the triangle inequality one obtains R

pel' A1) < 3ue(1) and  pp(J' A J) < Lug().
Next we choose the “good” subintervals by letting
U'={aelU": m(Iz\ A) < 6% (Ip)}

and 1" = l |— I- a i V
n 17 nd constructin " an "3 simi W W W
uclU ) g dJ"in a similar ay. No (S

mIN) = Yl < . -
u) > <% Mk IE A < = r
P ae%{}ﬂ e hk(Ta\ A) grike(I\ A).
Thus p(I" A T') < Luk(I), and
pe(I" A T) < gD + 3pn(I) = (D).

Lflk;wise, pr(J" A J) < 344k(J). Thus both I” and J” cover more than half
of I and J respectively, and so there must exist an element w € U” N V"
By Lemma 4.2 there is an integer | = [(n,t) such that '

/-’Jk(SlIU N J‘u—,) > 5k,UJk(JE)-
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As @ is in U” and V", it follows that

1 (S'AN B) > p(S'Iz N J) — (ST 0 ) \ (§8'AN B))
K &
> 6% i (Jw) — guk(fw) - g#k(h) >0 =

The proof of the next result is similar to that of partial rigidity in The-

orem 3.1.

THEOREM 4.4. Let T be an infinite staircase action with the sequence

of cuts cn = 3. Then the transformations T(X0 and T are partially

rigid.
REMARK 4.5. The previous proofs for infinite measure staircase Z*-ac-

tions can be generalized in a natural way to infinite measure staircase Z%-
actions for d > 2. We leave this as an exercise for the reader.

4.2. Multistep actions. Here we modify the infinite staircase to construct
a 72-action that is power weakly mixing. As mentioned earlier, a power
weakly mixing infinite transformation was constructed recently in [DGMS].
It remains open whether our infinite staircase actions are power weakly mix-
ing, but we show how to modify the construction so that essentially the same
proof of infinite ergodic index yields power weakly mixing for the new ac-
tions. For clarity of exposition we do this in two steps. First, we define step
actions, then we generalize this to multistep actions and show how the same
idea in the proof of Theorem 4.3 proves that multistep actions are power
weakly mixing.

Given a positive integer ¢ and (m,n) € 7? where m and n are positive,
a grid H is an (m,n)-step c-cut of a grid G of length g if G C H and His
a grid of least size that contains (c 4 1)? copies of G located at

((mi4+nj)g+i(i—1)/2+1], (ni+mj)g+j(j—1)/2+ij) for m # n,

((mi+nj)g+i(i—1)/2+17, (ni+mj+ci)g+3(i—1)/2+ij) form=n

for (i,7) € SQ(c + 1). We need the extra condition for the m = n case or
else GUs7) = GO The length of H is

for m # n,

{((m+n)c+ 1)g+clc—1)/2+¢?
((m-b—n—l—c)c-ib1)g+c(c—1)/2+c2 for m = n.

Note that an (m,n)-step c-cut is identical to an (n,m)-step c-cut. Figure 2
shows a (2,1)-step 2-cut.
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Gn(2v2)

6h,

M Gn(1,2)

(2,1)
glo2 G,

4h,

Gn(1.1)

3h,

Gh(O,1) Gh(z.o)

G, h, 2h,
Gh(1.0)

G"(ovo)

0 h, 2h, 3h, 4h,, 5h, 6h,

Fig. 2. A (2,1)-step 2-cut. The grid G, is shown next to G,41 and the indexed copies

of G, are drawn. Note that G(1'?) is located at position (4¢ + 2,59 + 3), and we include
the rows of intervals to show the offset.

A step action is defined by giving an initial grid Gp, a sequence {c;}
of positive numbers called the cutting sequence, and a sequence {a;}, a; =
(mi,m;), ¢ > 0, called the tiling sequence, where m; and n; are positive
integers. Then a sequence {G;}, ¢ > 0, of grids is defined so that Gp = {[0,1)}
and G;4 is an a;-step ¢;-cut of GG;. The length of each grid is h;.

It is clear that 719 and T(%1) so defined commute, and that the 72 -step
action is measure preserving, ergodic and defined on an infinite measure
space. It is possible to choose a tiling sequence (m;,n;) so that for each
positive (m,n), T(mn) satisfies the corresponding equalites similar to those
in the proof of Lemma 4.2, and then the proof of Theorem 4.3 can be
adapted to show that for all (m,n) # (0,0), T(mn) hag infinite ergodic
index; however, we omit the details since our emphasis is on the multistep
actions.

For the case of multistep actions, we will use the (m,n)-step 3-cuts of
the step action to define a sequence of grids to prove a generalization of
Lemma 4.2, which is Lemma 4.8 below.

Let a = ((m1,n1), ..., (mg,nt)) € Z?*. Let Gy, be a grid of length g,. We
say that a grid of least size H of length h is an a-multistep cut of G,, if H is

obtained as follows: first cut G,, into k copies, denoted by G’n’l, ..., Gl . For
each G;L’j where j = 1,...,k, cut G;z,j into 16 copies and arrange them in a

e

IS8T
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- ; has length
grid Gn,j so that Gpj is an (mj, n;)-step 3-cut of G, ; and Gn,j g

1 (:E’y) S 4 .
h. .. Denote the copies of G, ; in Gn,j by G:n,j whereG(a:‘, y) 1icatteQd( ;t
er)’zzs; let H be constructed by tiling the Gn,j’s s¢ thatk nj 18
(Zi i1, Zj_l hni-1), Where hno = 0. Then h=>3—1hn .
zSile T;’an usel; simple diagonalization argument to construct a seq
{cn} which has the following property.

PrROPOSITION 4.6. There is a sequence {cn} such that zf<(§a<1,£1)£};e.ﬁ

(ak Bk)) € Z2k7 with a; 2 /Bi and (a'iHBi) 7& (010)7 fO’f‘ 1 <1<k,
'the,re exists n € N such that

Cn = ((ala 181)7 cesy (ak’ :Bk))

A 72-multistep action is defined by giving a sequence {c‘nd} as (;n}P;cl)l;;;
sition 4.6, called the cutting sequence, and a sequence of grll s {Gn
Grni1isa c,-multistep cut of G.,.. Put Go = [0, 1) and ho = 1.

" .y .

The next result follows from Proposition 4.1.

PrOPOSITION 4.7. Let T' be the multistep action sequence of cuts cp as
defined above. Then T is defined on an infinite measure space.

The following lemma shows that the multistep action satisfies a much

i iangle property.
stronger version of the triang N |
LEMMA 4.8. Let k > 0 and ((al,ﬁl),...,(ak,ﬂ{c)-) E'Z , with aim_i_ El
d (os,8:) # (0 0), for 1 £ 1 < k. Given positive integers nhat . ;;L
iy M1 sV} >~ = )
'?Ti 1 l Ilc there exists an integer H = H(n,t1,...,te) >0 such that gt
=1,...,kt

any intervals In, .. Iy and Jb, - ., Ji in Gn 80 that J; € AT, t3), we have
1
H(oi,B:) [ : J),
(T (B[N J;) > (16k)t“( )

where t = max{t; : 1 <1< k}.
Proof. There exists a strictly increasing sequence {r;} C N and an
infinite sequence {s;} C {cn} so that
s; = (G, 3B1); - - - (Foks 3Br)); |
and Gr;41 is an s;-multistep (fut of Gr;. Also, note that Gr +1 contains 16k
copies of Gy, and for all 1 < i <k,

Tjhrj (ai,ﬂi)G£Q7?) — va’?),
1 (2,0)
T'j,i ?

T]h'r] (azvﬁl)G(l’O) p—i T(;l’o) G—p]- 71:G

74,2

pihe;(@isB) GO — T(—l,—l)Gg’j)

Tl

: d1<i<k.
and u(Gijf)) = oz i(Gr,) for (a,b) € SQ(4) and 1 =
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Let j be the smallest integer so that Ti > n. Set H = Z{;L;_l lhy,. We
now define Ij; recursively using the same idea as in Lemma 4.2 to obtain

Iy; with I ; € TH(9B) ] and p(L; 0 J) > (-wlT)tu(J). .

Lemma 4.8 can be generalized to the cases when o; < 0 or 3; < 0 by
appropriately redefining the t-triangle in each case. Now the next theorem
follows from Lemma 4.8 using the same argument as in Theorem 4.3.

THEOREM 4.9. Let T be the multistep 72 -action as defined above. Then
T is power weakly mizing.

5. Nonsingular type III Z%-actions. In this section we construct
ergodic nonsingular type III free actions. The type III, examples, 0 < X < 1,
can be seen as Z? versions of the type III, Chacon transformations of (J8],
in the same way as the constructions in [PR] generalize to Z2 the classic
(finite measure preserving) Chacon transformation. It is easy to see how to
change these constructions to obtain type 1II; examples. However, for the
type Il examples we use a modification of the staircase construction.

As explained in [PR], there are several choices for the arrangement of the
spacers in a Chacon Z2-action. For the type IIIy examples, 0 < )\ < 1, that
we construct, the basis transformations are not isomorphic, and we obtain
infinite ergodic index for T(1.0) , while T(01) ig not ergodic. The proof of
Theorem 5.9 follows techniques from [AFS2], where the nonsingular Chacon
transformations of [JS] are shown to be power weakly mixing (in the first
version of the present paper the authors had only shown ergodicity of the
. basis transformations). One could modify our construction to a nonsingular
multistep action as before to obtain power weak mixing for 719 but we omit
the details. We note that the nonsingular Chacon transformations of [JS]
were shown to have trivial centralizer, while in our examples the centralizer
contains an isomorphic copy of 72 (we do not know if the containment is
proper).

For the III examples we go back to a modification of the original Z2-
staircase of [AS] and so have to use an unbounded sequence {c,, } of cuts, and
hence only obtain weak mixing for the basis transformations; our method
to show ergodicity of products does not seem to apply to an unbounded
sequence of cuts, and in this case we only show that the basis transformations
are weakly mixing.

5.1. A nonsingular type 111, Chacon Z2-action. We let Gy = {[0,1)},
ho =1,0 < A < 1. Assume Gn has been defined. Gn41 is the grid of length
hnt1 = 3hy, + 1 that contains 9 copies of G, so that for (i,5) € SQ(3),

M(Gg’j)) = i i(Gr) where a;; = 1/(5 + 4)\) if i + 7 is even and (5 4+ 42)

= —_— e
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if i + j is odd. We arrange the copies of G, as follows:
i

1,0y _
L G = (0,0), Locg, ., (GY ) = (hn +1,0),
o ot 2,0) Loc (G(O’ )) = (0,h, + 1),
LOCG +1 (G%’ ) = (2h'n, + ]-, 0), Gn+1 7(7'2 1) 1 h + 1)
§ Locg,,, (G )) = (2hn + 1,hn + 1),

GY) = (hm + 1, Fn), R
LOCGn+1( ) LOCGn-q-l (Gsll’z ) = (hn + 1, 2hn + 1)7

Locg, . (G2) = (0,2hn + 1),
LoCG i1 ( 512,2)) = (2hn +1,2h, +1).

i (10) and 7OV
The rest of the grid is filled up with spfacers :Illloizir;ri(; ltlilr?tGing) o
?,re measurﬁ p::e(sie rY)II;gSWQhF?I:) .t?feghg(ierllﬂ;l; of the spacer remain's undefined
at Gl:'Hs’t: eerchO(’)Ze its length so that 71,1 is measure preserving from an
ét ’ lsl 'ng(}:(i’j) to the spacer (this only happens for (i,7) = .(0,0)). Oﬁl.e
hocka th tlf re are no conflicts. We leave it to the reader to verify thE.Lt this
Ztg(;fst:r?tergce)dic nonsingular Z?-action on a finite measure space. Finally,

the measure is normalized so that (X)) = 1; let v be such that

u([0,1)) = - |
Figure 3 shows a step in the construction of a Ch'acgn type III, action. The
relative sizes of the intervals are not shown in this figure.

Gr(]oyg) G§‘1,2) Grgz,z)

o0 [ v | 827

2,0
Q1 Gym G#m q‘)
Gn+1

2 .
Fig. 3. A Chacon type III Z“-action

jon 1 11T,
PROPOSITION 5.1. The nonsingular Chacon 72 -action is of type ILIx

0< A< .
Proof. Given A with pu(A) > 0, choose I in some grid Gn, such that

A1 (1-3(2o)

& (.7) 1 IT(f’J) for all
Let 109 — 10G%) for (i, 5) € SQ(3). Then p(In”' NA) > 2;(th 0)21 X
). By construction T(h"’O)Ir(Ll’O) = I,({?’O), so that u(A N TR0 A) > 0.
. By :

(3,7




e
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Moreover, u([,(?’o)) = /\‘l,u(L(Ll’O) ), and since T(*»-9) is an affine transfor-

mation from I{"” onto [{%%
A€ r(T).

Now we prove that r(T) # R*. For a.a. z € X, for any g € G\ {e}, there
exists a grid G,, where z and T9z reside in two different intervals. Call these
two intervals Iy and I, respectively. 79 is an affine map from Iy to I, so

wrs s a constant on Iy equal to (1) /p(Io).
Furthermore, u(Iy) and p(I;) can be written as

1 a A b 5 1 n
uilo) = (5—!—4/\) 5+4A) 7=A <5+4,\) i

1\ A \* o/ 1\
uh) = (5+4A) (5+4/\) T=A (5+4)\) "

for some positive integers a, b, ¢, and d where a + b = ¢ + d = n. Therefore

p(I1)/u(lo) = A*~9. Since these ratios dictate the only possible values for
wrg, T is of type III,. m

For the transformation TAO) et

B = {I € G, : Locg, (I) = (0,k), 0 < k < B},
Similarly, let

B ={I € G, : Locg, (I) = (k, 0), 0 <k < hyp}.
PROPOSITION 5.2. For all n> 1 and a.a. = € B,(Ll’o), Wphn-1,0)(x) = 1,
wrao(z) = 1, and wron(z) € {AL1,)}. Also, for a.a. z € B,(lo’l),
Wp(0,hpn—1) (:17) =1, Wr(o,1) (JJ) € {)\-1, 1, /\} and W(1,0) (.’L‘) € {/\_1, 1, )\}
Proof. The statement follows by induction by verifying it for G and
then from the nature of the construction. n

PROPOSITION 5.3. For a.a. € X, wpao (@) € {A75, 271,002} and
wron(z) € {A71, 1, ), b and wpay(z) € {27221, 1, A%},

Proof. We show the T(1:0) case; the other cases are analogous. We show
by induction on n > 1 that if z € G, and T(9¢ is defined in G,, then
wrao(z) € {A72, A1 1)), A%}. The case n = 1 is clear from the definition
of G1. Now assume the induction hypothesis for n. Let z € I for I ¢ Gt
with 700z defined in Gpy1. If for some (i,5) € SO4), ¢ € G and
T ¢ fo 7 then the induction hypothesis completes the proof. Now
assume that z € G’g’j) and 710 ¢ Gg’j), J = 0,1,2; the remaining cases
are simpler or analogous. Let y=TEhrt10)0 and J = T(—h"“’o)l; soy €
B,(ll’o) N Gﬁ,l’j ), By the placement of the grids, T(h""s)Ggl’j ) = G,(f’j ) (where
6=0if 7 =0,2and § = 1 when J =1). Also, u(Gg’j)) = ,Bu(G,(ll’j)) where

n s Wpteo () = A7 for aa. z € I,(ll’o). Thus

S S T T—— -
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hn,d )\Al’)‘ .
g € {x1,A}. Tt follows that wrms (y) = p(T¢ YN/ u(J) € { 3
(1,0)
e Wit () = Wpn-10 (H)wrao (@)wros (T 3?() |
) 1,0 _
it — 1. Also, since 700z € By and § = 0
osition 5.2, wp(hn-1.0)(¥) = 1. , -
Bylpr‘t:})Proposition 5.2 again, wp .5 (T(I’O):c) e {1, 1,AL Singgégmioi
?;\'é A1 1,4, A2} (worst case—in fact one can argue that
occur). = o |
The idea of (implicit) use of the cocycle relation in the following proof
comes from [JS] and [AFS2].

LEMMA 5.4. Let T be the Z*-action on | X,_‘?,u) ()L\Z dz]:i;;eg as»zve(m})?’og
ag.a. z € X and till n >0, wpeen () € {ATAT% 0, } T(0.hn)
-4 A3 A

v P,ero,f First 1ssume z € Gy,,. Let k > n be the §mallest int;g:r SZ tgz;t
(hn0) g is' defined in Gg. Let GL be the2 G, -copy 1n(}(b}1’1;:_,i3§)th a_ acGZ arﬁi
There exists another Gn-cop}’., call it 1G2, so< tila;nz 5 e {)\1757; )\}7: and
#(Gr) = (ﬁ;;((izl)ﬁ?}leﬁs?ng tlzlegct),cycle—rejla;ior; for the4 RadorllfNﬂ(.odirlm
:glfihc;tz;\ies and Proposition 5.3, we get wp(rn.0 (:c) e_{/\l 0,) .(.1, )i )}.Ols‘l(lga 1})7,
if £ ¢ G, we note that TNy € G, for'somei (1, ]L—d( "re(,i re,sul,t ' Finzilly,
Another application of the cocycle relat1or(10ghlv$)t 1e__ez;2 result.

for the case of wyp.n) (), We note that T NG =G, j ,

The proof of the following corollary just uses the fact that [ is the sum
of grid lengths.
Al t >0,
COROLLARY 5.5. Forl =" hn+i, n 20 and .
)\12t < W(t,0) (.’12) < )\_12t and )\8t < wT(o,z)(x) < A .

. 1,0 Ct .
The next lemma shows that the basis transformation T(1,0) }Labt t.lllle ttlll‘;s
angle property. The proof is as the proof of Le.mma.4.2, only t zrelof e
Casge one must take into account that after each iteration the meas
intervals is reduced in the worst case by A/(5 + 4A).

LEMMA 5.6. Let T be the 111y Chacon 7?2 -action as deﬁned cgbove. Let n
and t be positive integers. Then there exists an integer | given by
2t—1

l= Z hn—Hc
k=0

such that if 1,J € Gy, and J € A(I,t) then
2t

w(THOINJg) = 5h(J)-

(5 + 4X) .
The lemma below follows directly from the construction of the action.
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LEMMA 5.7. Let I and J be two intervals in a grid G,, and n > m. Let
I, and J, be any two subintervals of I and J, respectively, in the grid G,,,
such that I, and J, are in the same copy of Gu, in G,,. If pu(l) = /\ku(J)
then u(1,) = \*u(J,).

The next proposition follows from Lemma 5.4 and the proof of Lem-
ma 5.6.

PROPOSITION 5.8. Let T be the Chacon 72 -action gien by the above
construction. Then the transformations T(19) and T gre partially rigid
under the sequence r, = h, and N2> A/(5+4N).

THEOREM 5.9. Let T be the III) Chacon 72-action as defined above. The
basis transformation T(10) has infinite ergodic indeg. Furthermore, T(01) 45
not ergodic but has infinite conservative inder.

Proof. The proof starts (with the same notation) as the proof of The-
orem 4.3. Now choose 0 < § < A/(5440)2 | = Zi:ol hm+x as in
Lemma 5.6. By Corollary 5.5,

(2) dy, 0 S* < A~ 12kt

dpy,
Let a; be such that pu(I;) = a;p1(J;) and @ = le @;. Then pg(I) = aug(J).
Let 8 = aA™'?* Ag in Theorem 4.3 there exist indices U” and V" and
rectangles I, and J, so that for all 4 € U” and v eV IL,=Ix...x I is
(1—8%/(38))-full of A and J, = JUX . x Jp s (1—-6%/3)-full of B, n,....I
and Jj,...,J; are in the same grid G, and for each i, I} and J! are in the
same G-copy in Gy, it follows that Ji € A(ILt). Also, if I = Userr L
and J" =,y Jo, then

(" AT) < Spp(I) and gy (J” A J) < 3pi(J).

Since these unions cover more than 1/2 of I and J respectively, by Lem-
ma 5.7 we have

M(UMAO<#W)deuMW%AO<%%U
uely"

a.e.

Thus, there must exist at least one index w € U"NV". Since [ is defined as
in Lemma 5.6,

(S Ty 0 Jy) > 6% ().
Also, using (3), we get

dug o St _
ue(ST\ A = | T e < AR (1, )
I,\A
1o OF 5k
<A l%tﬁﬂk(lw) = ?Mk(t]w)~

— INFINITE ERGODIC ACTIUNS TW‘T,‘

Therefore, l
Mk(SlA NB) > Nk(SlIw NJw) — Nk((SlIw N Jw) \ (25 AN B))
> pk(S' Ty N Ju) — k(ST \ A) = (8" \ B)

5k ok
e 6kﬂk(Jw) - ?Nk(Jw) - _3‘Nk(JUJ) >0. =

5.2. Type III;. This is a direct consequence of the previous exampl(?. In
the c.onstruction of the grids, for even n use A; and for odd n use Ay such
that log A\; and log A2 are irrationally related.

5.3. Type IIly. The process of defining the III, sta%rcase .Z2—a‘cti011‘s 1s‘
similar to the construction of the infinite measure preserving st'al.rca.betac ion;
in this case the number of cuts ¢, is unbounded.'leen a positive integer ;I,
1angrid H is defined to be a staircase c-c‘ut of a gr1c21 G, 9f ler;gct;hl g, 1£ Ccr'i gt
and H is a grid of least size that contains (¢ + 1)* copies o ocate

(ig +14(i —1)/2+ij,jg+ 3 — 1)/2 +1j)
2
for (4,7) € SQ(h). The length of H is h = (c +1)g +c(c—1)/2 + ¢*.
The cutting sequence ¢, is defined to be
22" for n even,
Cn =

c for n odd.

Given a grid Gy, Gp41 is a staircase ¢c,-cut of Gy,. For odd n,
1
(c+1)2

w(GE)) = w(Gn)  for (i,5) € SQ(c +1).

For even n, u(G%O’O)) = $4(Gr), and

(GG = %(_Jr%__lu(an) for (i,5) € SQ(en + 1)\ {(0,0)}.

This creates one “thick” subgrid, the subgrid of Gln Wi:}? tfh:hlazf)igé:c:(s)
“thin” i se the length of the spacers
i ls, and many “thin” subgrids. Choose .
;:)lflz:,ltqt:ﬁ:ire;nsformations 710 701 are measure preserving when they go
: e
from an interval of G, 1 into a spacer of anl ((;ne cbecks that there ar
no conflicts). This defines a nonsingular ergodic Z*-action.

LEMMA 5.10. T is of type IIIO‘.

Proof. We first show that for any ¢ > 0 and p(A) > I(1) therji;}:iﬁ
l € 72 such that u(T'AN AN {z : w(z) < e}) > 0. Novirqt ere@e(l) o
interval I in some grid G, with p even such that u(I'N A) > qp

0,0 = 1,(I) and
1/((22 +1)2 - 1) < e Let I = INGY. Tt follows that p(I1) = 5a(1)
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u(lNA) > %p([l). There must exist another copy of I, call it I, so that

ulh) = 5 @mum and (a0 4) > Su(l).

Let I = Loc(Iz) — Loc(Iy). Then T'I; = I, and u(T*AN A) > 0. Since wi(x)
is constant over intervals,

_ K(l2) 1

wi(z) = o) - @ TR <e.

Thus 0 € »(T).

Now assume that there exists ¢ € r(T') with ¢ € (0,1). Let € > 0 be such
that ¢ —2¢e > 0 and ¢ + ¢ < 1. For any A of positive measure, there exists
l € 72 so that

T ANAN{z: wi(x) € Ne(q)}) > 0.

Consider an interval I € G}, where p is even and 1/((2% + 1)? — 1) < ¢. Let
I; and Iy be subintervals of T € Gp+i for some i > 0. We will show that
u(l2) /() & Ne(q).

Let | € Z? so that T'(I;) = I,. We may assume that w(I) > p(ls). So
wi(z) € [0,1]. Let J = {m : I was in a thin cut of G} and K = {m : I,

was in a thin cut of G,,} where p < m < p + 4. Then the lengths of I1 and
I> are given by

o uh) = (é) . ]1;[, (2% +11)2 0 (%) Li/2J’
(4) (I = (;) [i/2] '}JK e +11)2 o (4%) L1/2J‘

Since wy(x) = p(Ig)/u(Il), from (3) and (4),

[T (2% +1)2 - 1)
UJI(HI) = 2k 2 .
[Trex (2% +1)2 - 1)
If J = K, then wi(z) = 1 & N(q). Thus, there exists an even n such that
either I; € GLO’O) and Ir ¢ G%O’O) or I € G%O’O) and I7 ¢ G1(10,0)' Let N be the
largest such n. We may assume without loss of generality that N € K. This

ensures that yi(12) < p(I1). Note that if j > N and j € J, then j € K by the
construction of N. In the calculation of w;(z) these terms will cancel. Thus,

let J'=J\{j € J:j> N} Using the property that (22" + 1)(22" — 1) =
Hi\]:o (2% 4+ 1), one can verify wi(z) < e. Hence assuming ¢ € f(T) and
q € (0,1) results in a contradiction, and so T is type IIly. m

THEOREM 5.11. For the type 111y Z?-action defined above, the transfor-
mations T gnd TO gre weakly mizing.

xxxxxx
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Proof. The proof of ergodicity of the basis transforma}tlmns is Ommitted a
it follows the idea in the proof of Theorem 5.9; howe\lfler, t 565pr100f i simplor
and does not need the estimate analogc()lug) t.o CoiotawyE Loo t Craty o
show that the only L eigenvalue of T ’ is 1. ef f > be Such that
f(T(l’O) (z)) = Mf(x). For all £ > 0, there is a set A of positive mgq

Sure such
that
@) | ¢
1) 3 '
for all z,y € A. Choose an interval I in some odd grid G such that
wANI) > (1-1/3")u(A).

Cut and tile G,,. Each subgrid of Gg in ((}1”651 contai(r;soix piece Of T that is
more than 2/3 full of A. Consider G%O’(l,og?n’ ,and Gr," . Notg that ngl’o)
is not shifted relative to G%O’O) and G5 is shifted only 1 unj; relation o
GS’O) in the direction in which T7(10) maps.

Thus, there must exist some T € A such that

7 (hn0) (z) € A and T(2h"+1'0)(a}) e A.

By definition of 4, | M — 1] < £/3, which implies

1 < |AZhn — APn| 4 A 1] < 2¢/3.

Again using A, we get | A2hn+1 _ 1] < £/3. Combining these twq inequalities

£

l)\?hn _

gives y ohn
A= 1] < [A2hntl e < N1 N -

Thus, A=1. n
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ADDITIVE PROPERTIES AND UNIFORMLY
COMPLETELY RAMSEY SETS

BY

ANDRZEJ NOWIK (GDANSK)

Abstract. We prove some properties of uniformly completely Ramseyunull sets (for
example, every hereditarily Menger set is uniformly completely Ramsey null).

1. Introduction. The notion of UCRg sets was cgnsidered in [%ai]l whe.re
it was proved that every UCRy set has the Marczewski sg propferty. efn,ljéﬁ
problem concerning these sets is whether one can prove the ex1ste§ce o1 s o
a set of size continuum without any extra axioms (s.ee [Dal, Quei‘%_I ion 1). ye
are still unable to give a complete answer 'to this problem. 1 owe\;er,the
Section 4 we will show that every hereditarily Menger set belongs to

class of UCRy sets.

2. Notation. 3%° and V2 stand for “there exists infinitely many n” ax'ld
. =
“for all but finitely many n” respectively. We use w*T to denote thg, fain'li
of all strictly increasing functions from w*. In w*1 we define the order < i
the standard way:

T <Y< 3n<ka:>nw(k) < y(k)

isti i i “ as a subset of 2. So
Using the characteristic function, we can view [w] as : :
we will ?ook at 2¢ as the union [w]* U [w]<¥. Sometimes we identify [w]*
i hism.
with the space w*! via the standard homeomorp_
IfU € [w F € [w]<¥ and max(F) < min(U) then [F,U] denotes
{Aew]®: FC AC FUU}. We call such a set an Ellentuck set.

3. Definitions. Let us define the main notions of this article. o
A set X C [w]® is Ramsey iff there exists A € [w]“ such that either

[Al* C X or [A]PNX =0.

i ; 20.
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