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We introduce a class of CR-manifolds of hypersurface type called weak Y!q"-
manifolds that includes Y!q" manifolds and q-pseudoconvex manifolds. We develop
the L2-regularity theory of the complex Green operator on weak Y!q" manifolds and
show that #̄b and the Kohn Laplacian have closed range at all Sobolev levels, the
space of harmonic forms is finite dimensional, the Szegö kernel is continuous and
#̄b can be solved in C! on the appropriate forms levels. Our argument involves
building a weighted norm from a microlocal decomposition.
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1. Introduction and Results

In this article, we introduce a class of embedded CR manifolds satisfying a
geometric condition that we call weak Y!q". For such manifolds, we show that #̄b
has closed range on L2 and that the complex Green operator is continuous on L2.
Our method involves building a weighted norm from a microlocal decomposition.
We also prove that at any Sobolev level there is a weight such that the complex
Green operator inverting the weighted Kohn Laplacian is continuous. Thus, we can
solve the #̄b-equation in C!.

Let M2n−1 ⊂ !N be a C! compact, orientable CR-manifold, N ≥ n. We say that
M is of hypersurface type if the CR-dimension of M is n− 1 so that the complex
tangent bundle of M splits into a complex sub-bundle of dimension n− 1, the
conjugate of the complex sub-bundle, and one totally real direction. When the de
Rham complex on M is restricted to the conjugate of the complex sub-bundle, we
obtain the #̄b complex.

Received December 15, 2009; Accepted April 28, 2010
Address correspondence to Andrew Raich, Department of Mathematical Sciences,

SCEN 327, 1 University of Arkansas, Fayetteville, AR 72701, USA; E-mail:
araich@uark.edu

134

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
R
a
i
c
h
,
 
A
n
d
r
e
w
]
 
A
t
:
 
1
5
:
1
2
 
2
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



Regularity Results 135

When M is the boundary of a pseudoconvex domain, closed range for #̄b was
obtained in [2, 11, 15]. This work was extended to pseudoconvex manifolds of
hypersurface type by Nicoara in [12]. When the domain is not pseudoconvex, there
is a condition Y!q" which is known to imply subelliptic estimates for the complex
Green operator acting on !0$ q" forms (see [6, 7] for details on Y!q"). In this article,
we will adapt the microlocal analysis used in [12, 13] to obtain closed range results
for #̄b on manifolds satisfying weak Y!q".

When M is a CR-manifold of hypersurface type, the tangent space of M can be
spanned by !1$ 0" vector fields L1$ % % % $Ln−1, their conjugates and a purely imaginary
vector field T spanning the remaining direction. If #̄∗b denotes the Hilbert space
adjoint of #̄b with respect to the L2 inner product on M , we have a basic identity
for !0$ q" forms & of the form

&#̄b&&2 + &#̄∗b&&2 =
∑

J∈"q

n−1∑

j=1

&(Lj&J&2 +
∑

I∈"q−1

n−1∑

j$k=1

Re!cjkT&jI$ &kI"+ · · ·

where cjk denotes the Levi-form of M in local coordinates (see, for example,
[6, proof of Theorem 8.3.5]) and "q is the set of increasing q-tuples. The difficulty
in using the basic identity to prove regularity estimates for #̄b rests in controlling the
Re!cjkT&jI$ &kI" terms. When M satisfies Y!q", integration by parts can be performed
on the gradient term in such a way that

&#̄b&&2 + &#̄∗b&&2 ≥ C

( ∑

J∈"q

n−1∑

j=1

&(Lj&J&2 +
∑

J∈"q

n−1∑

j=1

&Lj&J&2
)
+ · · · %

Using Hörmander’s classic result on sums of squares [9], this can be used to
estimate &&&1/2. On manifolds where the Levi-form degenerates, it may still be
possible to choose good local coordinates so that with a suitable integration by
parts, there is the estimate

&#̄b&&2 + &#̄∗b&&2 ≥
∑

J∈"q

n−1∑

j=m+1

&(Lj&J&2 +
∑

J∈"q

m∑

j=1

&Lj&J&2 + · · · $

for some integer m. Unfortunately, since such an estimate no longer bounds all
of the Lj and (Lj derivatives, it is not possible to control &&&1/2. Hence, a weight
function is needed to provide some positivity in the L2-norm. The key idea in [12, 13]
is to microlocalize and decompose a form & into pieces whose Fourier transform is
supported on specific regions. The authors then build a weighted norm based on the
decomposition. In this weighted L2-space, the cjkT terms are under control and a
basic estimate holds. If the weight function is t)z)2, then Nicoara proves that #̄b has
closed range in L2 and in Hs, and if the weight function is obtained from property
!Pq", then Raich shows that the complex Green operator is compact on Hs!M" for
all s ≥ 0.

It is already known through an integration by parts argument (see the work
of Ahn et al. [1] or Zampieri [17]) that local regularity estimates hold on a class
of domains where the Levi-form has degeneracies and mixed signature (known
as q-pseudoconvex domains). Our method is to apply microlocal analysis to the
integration by parts argument used in the q-pseudoconvex case to obtain a more
general sufficient condition for (global) L2 and Sobolev space estimates.
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136 Harrington and Raich

Our main results are the following.

Theorem 1.1. Let M2n−1 be a C! compact, orientable weakly Y!q" CR-manifold
embedded in !N , N ≥ n and 1 ≤ q ≤ n− 2. Then the following hold:

(i) The operators #̄b ' L
2
0$q!M"→ L2

0$q+1!M" and #̄b ' L
2
0$q−1!M"→ L2

0$q!M" have
closed range;

(ii) The operators #̄∗b ' L
2
0$q+1!M"→ L2

0$q!M" and #̄∗b ' L
2
0$q!M"→ L2

0$q−1!M" have
closed range;

(iii) The Kohn Laplacian defined by !b = #̄b#̄∗b + #̄∗b#̄b has closed range on L2
0$q!M";

(iv) The complex Green operator Gq is continuous on L2
0$q!M";

(v) The canonical solution operators for #̄b, #̄
∗
bGq ' L

2
0$q!M"→ L2

0$q−1!M" and Gq#̄
∗
b '

L2
0$q+1!M"→ L2

0$q!M", are continuous;
(vi) The canonical solution operators for #̄∗b, #̄bGq ' L

2
0$q!M"→ L2

0$q+1!M" and Gq#̄b '
L2
0$q−1!M"→ L2

0$q!M", are continuous;
(vii) The space of harmonic forms #q!M", defined to be the !0$ q"-forms annihilated by

#̄b and #̄∗b is finite dimensional;
(viii) If q̃ = q or q + 1 and ( ∈ L2

0$q̃!M" so that #̄b( = 0, then there exists u ∈ L2
0$q̃−1!M"

so that

#̄bu = ()

(ix) The Szegö projections Sq = I − #̄∗b#̄bGq and Sq−1 = I − #̄∗bGq#̄b are continuous on
L2
0$q!M" and L2

0$q−1!M", respectively.

These results will be obtained by studying a family of weighted operators with
respect to a norm )))&)))t defined in terms of the weights et)z)

2 and e−t)z)2 and the
microlocal decomposition of &. For such operators, we will also be able to obtain
Sobolev space estimates, as follows:

Theorem 1.2. Let M2n−1 be a C! compact, orientable weakly Y!q" CR-manifold
embedded in !N , N ≥ n. For s ≥ 0 there exists Ts ≥ 0 so that the following hold:

(i) The operators #̄b ' L
2
0$q!M"→ L2

0$q+1!M" and #̄b ' L
2
0$q−1!M"→ L2

0$q!M" have
closed range with respect to ))) · )))t. Additionally, for any s > 0 if t ≥ Ts, then
#̄b ' H

s
0$q!M"→ Hs

0$q+1!M" and #̄b ' H
s
0$q−1!M"→ Hs

0$q!M" have closed range with
respect to )))*s · )))t;

(ii) The operators #̄∗b$t ' L
2
0$q+1!M"→ L2

0$q!M" and #̄∗b$t ' L
2
0$q!M"→ L2

0$q−1!M" have
closed range with respect to ))) · )))t. Additionally, if t ≥ Ts, then #̄

∗
b$t ' H

s
0$q+1!M"→

Hs
0$q!M" and #̄

∗
b$t ' H

s
0$q!M"→ Hs

0$q−1!M" have closed range with respect to )))*s · )))t;
(iii) The Kohn Laplacian defined by !b$t = #̄b#̄∗b$t + #̄∗b$t#̄b has closed range on L2

0$q!M"
(with respect to ))) · )))t) and also on Hs

0$q!M" (with respect to )))*s · )))t) if t ≥ Ts;
(iv) The space of harmonic forms #q

t !M", defined to be the !0$ q"-forms annihilated by
#̄b and #̄∗b$t is finite dimensional;

(v) The complex Green operator Gq$t is continuous on L2
0$q!M" (with respect to ))) · )))t)

and also on Hs
0$q!M" (with respect to )))*s · )))t) if t ≥ Ts;

(vi) The canonical solution operators for #̄b, #̄∗b$tGq$t ' L
2
0$q!M"→ L2

0$q−1!M"

and Gq$t#̄
∗
b$t ' L

2
0$q+1!M"→ L2

0$q!M" are continuous (with respect to ))) · )))t).
Additionally, #̄∗b$tGq$t ' H

s
0$q!M"→ Hs

0$q−1!M" and Gq$t#̄
∗
b$t ' H

s
0$q+1!M"→ Hs

0$q!M"
are continuous (with respect to )))*s · )))t) if t ≥ Ts.
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Regularity Results 137

(vii) The canonical solution operators for #̄∗b$t, #̄bGq$t ' L
2
0$q!M"→ L2

0$q+1!M"

and Gq$t#̄b ' L
2
0$q−1!M"→ L2

0$q!M" are continuous (with respect to ))) · )))t).
Additionally, #̄bGq$t ' H

s
0$q!M"→ Hs

0$q+1!M" and Gq$t#̄b ' H
s
0$q−1!M"→ Hs

0$q!M"
are continuous (with respect to )))*s · )))t) if t ≥ Ts.

(viii) The Szegö projections Sq$t = I − #̄∗b$t#̄bGq$t and Sq−1$t = I − #̄∗b$tGq$t#̄b are
continuous on L2

0$q!M" and L2
0$q−1!M", respectively and with respect to ))) · )))t.

Additionally, if t ≥ Ts, then Sq$t and Sq−1$t are continuous on Hs
0$q and Hs

0$q−1 (with
respect to )))*s · )))t), respectively.

(ix) If q̃ = q or q + 1 and ( ∈ Hs
0$q!M" so that #̄b( = 0 and ( ⊥ # q̃

t (with respect to
))) · )))t), then there exists u ∈ Hs

0$q̃−1!M" so that

#̄bu = ()

(x) If q̃ = q or q + 1 and ( ∈ C!
0$q̃!M" satisfies #̄b( = 0 and ( ⊥ # q̃

t (with respect to
-·$ ·.t), then there exists u ∈ C!

0$q̃−1!M" so that

#̄bu = (%

Remark 1.3. We will see below that the proof of Theorem 1.1 follows from
Theorem 1.2 and the fact that the weighted and unweighted norms are equivalent.
We will see in the proof of the main theorem that the constants improve as t →
!. In particular, we will show that )))+)))2t ≤ AtQbt!+$ +" where At → 0 as t → !. A
(weak) consequence is that if the weight is strong enough, #̄ and #̄∗b have closed
range in weighted L2 with a constant that does not depend on the weight. In
the unweighted case, this means the constants may be quite large. For a more
quantitative discussion, see Remark 7.1 below.

Additionally, our results hold for any abstract CR-manifold for which a
q-compatible function exists. q-compatible functions are defined in Definition 2.7.
They play the analogous role here of CR-plurisubharmonic functions in [12, 13].

In Section 2, we introduce the notion of weak Y!q" manifolds and q-compatible
functions. In Section 3, we set up the microlocal analysis and build the weighted
norm. Additionally, we compute #̄b and #̄∗b in local coordinates. In Section 4, we
adapt the microlocal analysis in [12, 13] and prove a basic estimate: Proposition 4.1.
In Section 5, we use the basic estimate to begin the study of the regularity theory
for #̄b, and we prove Theorems 1.2 and 1.1 in Sections 6 and 7, respectively.

2. Definitions and Notation

2.1. CR Manifolds and !̄b

Definition 2.1. Let M ⊂ !N be a C! manifold of real dimension 2n− 1, n ≥ 2. M
is called a CR-manifold of hypersurface type if M is equipped with a sub-bundle
T 1$0!M" of the complexified tangent bundle !TM = TM ⊗! so that

(i) dim! T 1$0!M" = n− 1;
(ii) T 1$0!M" ∩ T 0$1!M" = ,0- where T 0$1!M" = T 1$0!M";
(iii) T 1$0!M" satisfies the following integrability condition: if L1$L2 are smooth

sections of T 1$0!M", then so is the commutator .L1$L2/.
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138 Harrington and Raich

Since M is a submanifold of !N , we can generate T 1$0
z !M" for z ∈ M from the

induced CR-structure on M as follows: set T 1$0
z !M" = T 1$0

z !!N " ∩ Tz!M"⊗! (under
the natural inclusions). Since the complex dimension of T 1$0

z !M" is n− 1 for all
z ∈ M , we can let T 1$0!M" = ⋃z∈M T 1$0

z !M". Observe that conditions (ii) and (iii) are
automatically satisfied in this case.

For the remainder of this article, M2n−1 is a smooth, orientable CR-manifold of
hypersurface type embedded in !N for some N ≥ n. Let *0$q!M" be the bundle of
!0$ q"-forms on M , i.e., *0$q!M" = ∧q!T 0$1!M"∗". Denote the C! sections of *0$q!M"
by C!

0$q!M".
We construct #̄b using the fact that M ⊂ !N . There is a Hermitian inner product

on *0$q!M" given by

!+$ 0" =
∫

M
-+$0.x dV$

where dV is the volume element on M and -+$0.x is the induced inner product on
*0$q!M". This metric is compatible with the induced CR-structure, i.e., the vector
spaces T 1$0

z !M" and T 0$1
z !M" are orthogonal under the inner product. The involution

condition (iii) of Definition 2.1 means that #̄b can be defined as the restriction of
the de Rham exterior derivative d to *!0$q"!M". The inner product gives rise to an
L2-norm &·&0, and we also denote the closure of #̄b in this norm by #̄b (by an abuse
of notation). In this way, #̄b ' L2

0$q!M"→ L2
0$q+1!M" is a well-defined, closed, densely

defined operator, and we define #̄∗b ' L
2
0$q+1!M"→ L2

0$q!M" to be the L2-adjoint of #̄b.
The Kohn Laplacian !b ' L

2
0$q!M"→ L2

0$q!M" is defined as

!b = #̄∗b#̄b + #̄b#̄∗b%

2.2. The Levi Form and Eigenvalue Conditions

The induced CR-structure has a local orthonormal basis L1$ % % % $Ln−1 for the !1$ 0"-
vector fields in a neighborhood U of each point x ∈ M . Let 11$ % % % $ 1n−1 be the
dual basis of !1$ 0"-forms that satisfy -1j$Lk. = 2jk. Then (L1$ % % % $(Ln−1 is a local
orthonormal basis for the !0$ 1"-vector fields with dual basis 1̄1$ % % % $ 1̄n−1 in U .
Also, T!U" is spanned by L1$ % % % $Ln−1, (L1$ % % % $(Ln−1, and an additional vector field
T taken to be purely imaginary (so (T = −T ). Let 3 be the purely imaginary
global 1-form on M that annihilates T 1$0!M"⊕ T 0$1!M" and is normalized so that
-3$T. =− 1.

Definition 2.2. The Levi form at a point x ∈ M is the Hermitian form given by
-d3x$L ∧(L′. where L$L′ ∈ T 1$0

x !U", U a neighborhood of x ∈ M .

Definition 2.3. We call M weakly pseudoconvex if there exists a form 3 such that
the Levi form is positive semi-definite at all x ∈ M and strictly pseudoconvex if there
is a form 3 such that the Levi form is positive definite at all x ∈ M .

The following two (standard) definitions are taken from Chen and Shaw [6].

Definition 2.4. Let M be an oriented CR-manfiold of real dimension 2n− 1 with
n ≥ 2. M is said to satisfy condition Z!q", 1 ≤ q ≤ n− 1, if the Levi form associated
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Regularity Results 139

with M has at least n− q positive eigenvalues or at least q + 1 negative eigenvalues
at every boundary point. M is said to satisfy condition Y!q", 1 ≤ q ≤ n− 1 if the
Levi form has at least either max,n− q$ q + 1- eigenvalues of the same sign or
min,n− q$ q + 1- pairs of eigenvalues of opposite signs at every point on M .

Note that Y!q" is equivalent to Z!q" and Z!n− 1− q". The necessity of the
symmetric requirements for #̄b at levels q and n− 1− q stems from the duality
between !0$ q"-forms and !0$ n− 1− q"-forms (see [7, 14] for details).

Z!q" and Y!q" are classical conditions and natural extensions of strict
pseudoconvexity. We wish, however, for an extension of weak pseudoconvexity. Let
P ∈ M and let U be a neighborhood of P. Then there exists an orthonormal basis
L1$ % % % $Ln−1 of T 1$0!U". By the Cartan formula (see [4, p. 14]),

-d3$Lj ∧(Lk. = −-3$ .Lj$(Lk/.%

If

.Lj$(Lk/ = cjkT mod T 1$0!U"⊕ T 0$1!U"$

then -d3$Lj ∧(Lk. = cjk. For this reason, the matrix !cjk"1≤j$k≤n−1 is called the Levi
form with respect to L1$ % % % $Ln−1.

By weakening the definition of Z!q", we obtain:

Definition 2.5. Let M be a smooth, compact, oriented CR-manifold of hypersurface
type of real dimension 2n− 1. We say M satisfies Z!q" weakly at P if there exists

(i) a neighborhood U ⊂ M containing P;
(ii) an integer m = m!U" 4= q;
(iii) an orthonormal basis L1$ % % % $Ln−1 of T 1$0!U" so that 41 + · · · + 4q − !c11 +

· · · + cmm" ≥ 0 on U , where 41$ % % % $ 4n−1 are the eigenvalues of the Levi form in
increasing order.

We say that M is weakly Z!q" if M is Z!q" weakly at P for all P ∈ M and the
condition m > q or m < q is independent of P. As above, M satisfies Y!q" weakly at
P if M satisfies Z!q" weakly at P and Z!n− 1− q" weakly at P.

To see that Definition 2.5 generalizes condition Z!q", choose coordinates
diagonalizing cjk at P so that cjj)P = 4j . If the Levi-form has at least n− q positive
eigenvalues, then 4q > 0, so we can let m = q − 1 and obtain 41 + · · · + 4q − !c11 +
· · · + cmm" = 4q > 0 at P. If the Levi-form has at least q + 1 negative eigenvalues,
then 4q+1 < 0, so we can let m = q + 1 and obtain 41 + · · · + 4q − !c11 + · · · +
cmm" = −4q+1 > 0 at P. In either case, the sum is strictly positive at P, so the
estimate extends to a neighborhood U .

The preceding argument also shows that weak-Z!q" is satisfied by domains
where the Levi-form has a local diagonalization with increasing entries along the
diagonal and has at least n− q non-negative eigenvalues or q + 1 non-positive
eigenvalues. However, diagonalizability is not necessary. Consider the hypersurface
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140 Harrington and Raich

in !5 defined by 5!z" = Im z5 + )z3)2 + )z4)2 + !Re z1"!)z1)2 − 2)z2)2". Under the
coordinates Lj = #

#zj
− 2i #5

#zj

#
#z5

and T = 2i #
#z5

+ 2i #
#z̄5

the Levi-form looks like





2Re z1 −z2 0 0
−z̄2 −2Re z1 0 0
0 0 1 0
0 0 0 1



 %

We can compute the eigenvalues of this matrix in increasing order as

{
−
√
4!Re z1"2 + )z2)2$

√
4!Re z1"2 + )z2)2$ 1$ 1

}
%

Since the corresponding eigenvectors are discontinuous at P = 0, the Levi-form
cannot be diagonalized in a neighborhood of P = 0. In fact, we cannot even
continuously separate the positive and negative eigenspaces. Let q = 2 and m = 0.
The sum of the two smallest eigenvalues is zero, so this domain satisfies weak Z!2",
which is equivalent to weak Y!2" when n = 5.

The signature of the Levi-form may also change locally. If we let 5!z" =
Im z5 + )z2)2 + )z3)2 + )z4)2 +Re!!z1"2z̄1" with Lj and T as before, then we have a
diagonal Levi-form with eigenvalues ,2Re!z1"$ 1$ 1$ 1-. When Re!z1" > 0, we have
four positive eigenvalues. When Re!z1" < 0, we have three positive and one negative
eigenvalues. Note that since we always have at least three positive eigenvalues,
this satisfies the standard definition of Y!2". From the standpoint of weak Z!2",
we can take m = 0 and obtain 41 + 42 = 2Re!z1"+ 1 > 0 near P, or we can take
m = 1 and obtain 41 + 42 − c11 = !2Re!z1"+ 1"− 2Re!z1" = 1 > 0, so either value
of m may work. Hence, the appropriate value of m need not be constant on M .
However, since we disallow m = q, the condition m < q or m > q must be global.

If we can choose m < q independent of the local neighborhood U , then weak
Z!q" agrees with !q − 1"-pseudoconvexity (see [17] for the definition on boundaries
of domains and further references, or [1] for generic CR submanifolds). If M
satisfies weak Z!1" for a choice of m = 0, then M is simply a weakly pseudoconvex
CR-manifold of hypersurface type.

Remark 2.6. For a CR-manifold M that satisfies weak Y!q", the m that corresponds
to Z!q" has no relation to the m that corresponds to Z!n− 1− q". To emphasize
this, we may use mq for the integer-valued function on M that corresponds to weak
Z!q" and similarly mn−1−q for weak Z!n− 1− q".

2.3. q-Compatible Functions

Let "q = ,J = !j1$ % % % $ jq" ∈ $q ' 1 ≤ j1 < · · · < jq ≤ n− 1-.
Let 6 be a function defined near M and define the 2-form

76 = 1
2

(
#b#̄b6− #̄b#b6

)
+ 1

2
8!6"d3% (1)

where 8 is the real part of the complex normal to M . We will sometimes consider
76 to be the matrix 76 = !76jk" where 76jk = -76$Lj ∧(Lk..
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Regularity Results 141

Definition 2.7. Let M be a smooth, compact, oriented CR-manifold of hypersurface
type of real dimension 2n− 1 satisfying Z!q" weakly at some point P ∈ M . Let
6 be a smooth function near M . We say 6 is q-compatible with M at P if there
exists a neighborhood U ⊂ M containing P, an integer m = mq!U" from weak Z!q",
an orthonormal basis L1$ % % % $Ln−1 of T 1$0!U", and a constant B6 > 0 satisfying

(i) 41 + · · · + 4q − !c11 + · · · + cmm" ≥ 0 on U , where 41$ % % % $ 4n−1 are the
eigenvalues of the Levi form in increasing order.

(ii) b1 + · · · + bq − !711 + · · · +7mm" ≥ B6 on U if m < q, where b1$ % % % $ bn−1 are
the eigenvalues of 7 in increasing order.

(iii) bn−q + · · · + bn−1 − !711 + · · · +7mm" ≤ −B6 on U if m > q.

We call B6 the positivity constant of 6. Observe that if M is pseudoconvex,
M satisfies Definition 2.5 for any 1 ≤ q ≤ n− 1 and any orthonormal basis
L1$ % % % $Ln−1 by selecting m = 0. Hence, plurisubharmonic functions will be
q-compatible with pseudoconvex domains for any 1 ≤ q ≤ n− 1.

Remark 2.8. If 6 = )z)2 then Proposition 3.1 below proves that 7 = ##̄ when tested
against complex tangent vectors of M . Tested against such vectors, 7)z)2 = I . Since
this is diagonal and all of the eigenvalues of I are 1, b1 + · · · + bq − !711 + · · · +
7mm" = q −m ≥ 1 if q > m and bn−q + · · · + bn−1 − !711 + · · · +7mm" = q −m ≤
−1 if q < m. Hence, 6 = )z)2 is always a q-compatible function on M with positivity
constant 1.

Remark 2.9. Without the requirement that ,L1$ % % % $Ln−1- are orthonormal, 6 = )z)2
may not be a q-compatible function for all values of m 4= q. For a given choice of
non-orthonormal local coordinates, we can always define a local function which is
q-compatible for all allowable q and m, but there is no guarantee that such local
functions could be made global. Hence, if we remove the restriction that the local
coordinates in Definition 2.7 are orthonormal, we must also assume the existence of
a global function which is q-compatible for all allowable choices of q and m.

Remark 2.10. We note that if for every B6 > 0 there exists a q-compatible function
6 satisfying 0 ≤ 6 ≤ 1 with positivity constant B6, then the methods of [13] can be
incorporated into our current paper to show that the complex Green operator is
compact. Such a condition is analogous to Catlin’s Property !P" [5].

In this article, constants with no subscripts may depend on n, N , M but not any
relevant q-compatible function. Those constants will be denoted with an appropriate
subscript. The constant A will be reserved for the constant in the construction of
the pseudodifferential operator in Section 3.

3. Computations in Local Coordinates

3.1. Local Coordinates and CR-Plurisubharmonicity

The following result is proved in [13].

Proposition 3.1. Let M2n−1 be a smooth, orientable CR-manifold of hypersurface type
embedded in !N for some N ≥ n. If 6 is a smooth function near M , L ∈ T 1$0!M", and 8
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is the real part of the complex normal to M , then on M

〈
1
2

(
##̄6− #̄#6

)
$L ∧(L

〉
−
〈
1
2

(
#b#̄b6− #̄b#b6

)
$L ∧(L

〉
= 1

2
8,6--d3$L ∧(L.

3.2. Pseudodifferential Operators

We follow the setup for the microlocal analysis in [13]. Since M is compact, there
exists a finite cover ,U8-8 so each U8 has a special boundary system and can be
parameterized by a hypersurface in !n (U8 may be shrunk as necessary). To set
up the microlocal analysis, we need to define the appropriate pseudodifferential
operators on each U8. Let 9 = !91$ % % % $ 92n−2$ 92n−1" = !9′$ 92n−1" be the coordinates
in Fourier space so that 9′ is dual to the part of T!M" in the maximal complex
subspace (T 1$0!M"⊕ T 0$1!M") and 92n−1 is dual to the totally real part of T!M", i.e.,
the “bad” direction T . Define

%+ =
{
9 ' 92n−1 ≥

1
2
)9′) and )9) ≥ 1

}
)

%− = ,9 ' −9 ∈ %+-)

%0 =
{
9 ' −3

4
)9′) ≤ 92n−1 ≤

3
4
)9′)
}
∪ ,9 ' )9) ≤ 1-%

Note that %+ and %− are disjoint, but both intersect %0 nontrivially. Next, we define
smooth functions on ,)9) ' )9)2 = 1-. Let

0+!9" = 1 when 92n−1 ≥
3
4
)9′) and supp0+ ⊂

{
9 ' 92n−1 ≥

1
2
)9′)
}
)

0−!9" = 0+!−9")
00!9" satisfies 00!9"2 = 1− 0+!9"2 − 0−!9"2%

Extend 0+, 0−, and 00 homogeneously outside of the unit ball, i.e., if )9) ≥ 1, then

0+!9" = 0+!9/)9)"$ 0−!9" = 0−!9/)9)"$ and 00!9" = 00!9/)9)"%

Also, extend 0+, 0−, and 00 smoothly inside the unit ball so that !0+"2 + !0−"2 +
!00"2 = 1. Finally, for a fixed constant A > 0 to be chosen later, define for any t > 0

0+
t !9" = 0+!9/!tA""$ 0−

t !9" = 0−!9/!tA""$ and 00
t !9" = 00!9/!tA""%

Next, let :+
t , :

−
t , and : 0 be the pseudodifferential operators of order zero

with symbols 0+
t , 0

−
t , and 0

0
t , respectively. The equality !0+

t "
2 + !0−

t "
2 + !00

t "
2 = 1

implies that

!:+
t "

∗:+
t + !: 0

t "
∗: 0

t + !:−
t "

∗:−
t = Id%

We will also have use for pseudodifferential operators that “dominate” a given
pseudodifferential operator. Let 0 be cut-off function and 0̃ be another cut-off
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Regularity Results 143

function so that 0̃)supp0 ≡ 1. If : and :̃ are pseudodifferential operators with
symbols 0 and 0̃, respectively, then we say that :̃ dominates : .

For each U8, we can define :+
t , :

−
t , and :

0
t to act on functions or forms

supported in U8, so let :+
8$t, :

−
8$t, and :

0
8$t :

0
8$t be the pseudodifferential operators of

order zero defined on U8, and let %+
8 , %

−
8 , and %0

8 be the regions of 9-space dual to
U8 on which the symbol of each of those pseudodifferential operators is supported.
Then it follows that:

!:+
8$t"

∗:+
8$t + !: 0

8$t"
∗: 0

8$t + !:−
8$t"

∗:−
8$t = Id%

Let :̃+
4$t and :̃−

4$t be pseudodifferential operators that dominate :+
4$t and :−

4$t,
respectively (where :+

4$t and :−
4$t are defined on some U4). If C̃+

4 and C̃−
4 are the

supports of :̃+
4$t and :̃

−
4$t, respectively, then we can choose ,U4-, 0̃+

4$t, and 0̃
−
4$t so

that the following result holds.

Lemma 3.2. Let M be a compact, orientable, embedded CR-manifold. There is a finite
open covering ,U4-4 of M so that if U4$U8 ∈ ,U4- have nonempty intersection, then
there exists a diffeomorphism ; between U8 and U4 with Jacobian &; so that:

(i) t&;!%̃+
4 " ∩%−

8 = ∅ and %+
8 ∩ t&;!%̃−

4 " = ∅ where t&; is the inverse of the
transpose of &;;

(ii) Let ;:+
4$t,

;:−
4$t, and

;: 0
4$t be the transfers of :+

4$t, :
−
4$t, and :

0
4$t, respectively

via ;. Then on ,9 ' 92n−1 ≥ 4
5 )9′) and )9) ≥ !1+ <"tA-, the principal symbol of

;:+
4$t is identically 1, on ,9 ' 92n−1 ≤ − 4

5 )9′) and )9) ≥ !1+ <"tA-, the principal
symbol of ;:−

4$t is identically 1, and on ,9 ' − 1
392n−1 ≥ 1

3 )9′) and )9) ≥ !1+ <"tA-,
the principal symbol of ;: 0

4$t is identically 1, where < > 0 can be very small;
(iii) Let ;:̃+

4$t,
;:̃−

4$t be the transfers via ; of :̃+
4$t and :̃−

4$t, respectively. Then the
principal symbol of ;:̃+

4$t is identically 1 on %+
8 and the principal symbol of ;:̃−

4$t

is identically 1 on %−
8 ;

(iv) %̃+
8 ∩ %̃−

8 = ∅.

We will suppress the left superscript ; as it should be clear from the context
which pseudodifferential operator must be transferred. The proof of this lemma is
contained in Lemma 4.3 and its subsequent discussion in [12].

If P is any of the operators :+
4$t, :

−
4$t, or :

0
4$t, then it is immediate that

D(
9=!P" =

1
)t)( q(!x$ 9" (2)

for )() ≥ 0, where q(!x$ 9" is bounded independently of t.

3.3. Norms

We have a volume form dV on M , and we define the following inner products and
norms on functions (with their natural generalizations to forms). Let 6 be a smooth
function defined near M . We define

!&$ +"6 =
∫

M
&+̄ e−6dV$ and &+&26 = !+$ +"6
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144 Harrington and Raich

In particular, !&$ +"0 =
∫
M &+̄dV and &+&20 = !+$ +"0 are the standard (unweighted)

L2 inner product and norm. If + =∑J∈"q
+J 1̄J , then we use the common shorthand

&+& =∑J∈"q
&+J& where & ·& represents any norm of +.

We also need a norm that is well-suited for the microlocal arguments. Let
6+ and 6− be smooth functions defined near M . Let ,>8- be a partition of unity
subordinate to the covering ,U8- satisfying

∑
8 >

2
8 = 1. Also, for each 8, let >̃8 be a

cutoff function that dominates >8 so that supp >̃8 ⊂ U8. Then we define the global
inner product and norm as follows:

-&$+.6+$6− = -&$+.±
=
∑

8

[
!>̃8:

+
8$t>8&

8$ >̃8:
+
8$t>8+

8"6+ + !>̃8: 0
8$t>8&

8$ >̃8:
0
8$t>8+

8"0

+ !>̃8:−
8$t>8&

8$ >̃8:
−
8$t>8+

8"6−
]

and

)))+)))26+$6 = )))+)))2± =
∑

8

[
&>̃8:+

8$t>8+
8&26+ + &>̃8: 0

8$t>8+
8&20 + &>̃8:−

8$t>8+
8&26−
]
$

where +8 is the form + expressed in the local coordinates on U8. The superscript 8
will often be omitted.

For a form + supported on M , the Sobolev norm of order s is given by the
following:

&+&2s =
∑

8

&>̃8*s>8+
8&20

where * is defined to be the pseudodifferential operator with symbol !1+ )9)2"1/2.
In [13], it is shown that there exist constants c± and C± so that

c±&+&20 ≤ )))+)))26+$6 ≤ C±&+&20 (3)

where c± and C± depend on maxM,)6+)+) 6−)- (assuming tA ≥ 1). Additionally,
there exists an invertible self-adjoint operator H± so that !&$ +"0 = -&$H±+.±.

3.4. !̄b and Its Adjoints

If g is a function on M , in local coordinates,

#̄bg =
n−1∑

j=1

(Ljg1̄j$

while if + is a !0$ q"-form, there exist functions mJ
K so that

#̄b+ =
∑

J∈"q
K∈"q+1

n−1∑

j=1

<jJK(Lj+J 1̄K +
∑

J∈"q
K∈"q+1

+Jm
J
K1̄K
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where <jJK is 0 if ,j- ∪ J 4= K as sets and is the sign of the permutation that reorders
jJ as K. We also define

+jI =
∑

J∈"q

<jIJ +J

(in this case, )I) = q − 1 and )J ) = q). Let(L∗
j be the adjoint of(Lj in !· $ ·"0,(L∗$6

j be the
adjoint of (Lj in !· $ ·"6. We define #̄∗b and #̄∗$6b in L2!M" and L2!M$ e−6", respectively.
In this paper, 6 stands for 6+ or 6− and we will abbreviate #̄∗$6

+
b by #̄∗$+b and similarly

for #̄∗$−b , (L∗$+, (L∗$−, etc.
On a !0$ q"-form +, we have (for some functions fj ∈ C!!U" independent of +)

#̄∗b+ =
∑

I∈"q−1

n−1∑

j=1

(L∗
j+jI1̄I +

∑

I∈"q−1
J∈"q

mI
J+J 1̄I

= −
∑

I∈"q−1

n−1∑

j=1

(
Lj+jI + fj+jI

)
1̄I +

∑

I∈"q−1
J∈"q

mI
J+J 1̄I

#̄∗$6b + =
∑

I∈"q−1

n−1∑

j=1

(L∗$6
j +jI1̄I +

∑

I∈"q−1

mI
J+J 1̄I

= −
∑

I∈"q−1

n−1∑

j=1

(
Lj+jI − Lj6+jI + fj+jI

)
1̄I +

∑

I∈"q−1
J∈"q

mI
J+J 1̄I % (4)

Consequently, we see that

#̄∗$6b = #̄∗b − .#̄∗b$ 6/$

and both adjoints have the same domain. Finally, let #̄∗b$± be the adjoint of #̄b with
respect to -· $ ·.±.

The computations proving Lemmas 4.8 and 4.9 and equation (4.4) in [12] can be
applied here with only a change of notation, so we have the following two results,
recorded here as Lemmas 3.3 and 3.4. The meaning of the results is that #̄∗b$± acts
like #̄∗$+b for forms whose support is basically %+ and #̄∗$−b on forms whose support
is basically %−.

Lemma 3.3. On smooth !0$ q"-forms,

#̄∗b$± = #̄∗b −
∑

4

>24:̃
+
4$t.#̄

∗
b$ 6

+/+
∑

4

>24:̃
−
4$t.#̄

∗
b$ 6

−/

+
∑

4

(
>̃4.>̃4:

+
4$t>4$ #̄b/

∗>̃4:
+
4$t>4 + >4!:+

4$t"
∗>̃4.#̄

∗$+
b $ >̃4:

+
4$t>4/>̃4

+ >̃4.>̃4:−
4$t>4$ #̄b/

∗>̃4:
−
4$t>4 + >4!:+

4$t"
∗>̃4.#̄

∗$−
b $ >̃4:

−
4$t>4/>̃4 + EA

)
$

where the error term EA is a sum of order zero terms and “lower order” terms. Also,
the symbol of EA is supported in %0

4 for each 4.
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146 Harrington and Raich

We are now ready to define the energy forms that we use. Let

Qb$±!&$ +" = -#̄b&$ #̄b+.± + -#̄∗b$±&$ #̄∗b$±+.±
Qb$+!&$ +" = !#̄b&$ #̄b+"6+ + !#̄∗$+b &$ #̄∗$+b +"6+

Qb$0!&$ +" = !#̄b&$ #̄b+"0 + !#̄∗b&$ #̄∗b+"0
Qb$−!&$ +" = !#̄b&$ #̄b+"6− + !#̄∗$−b &$ #̄∗$−b +"6− %

Lemma 3.4. If + is a smooth !0$ q"-form on M , then there exist constants K$K± and
K′ with K ≥ 1 so that

KQb$±!+$ +" + K±
∑

8

&>̃8:̃ 0
8$t>8+

8&20 + K′&+&20 + Ot!&+&2−1"

≥
∑

8

[
Qb$+!>̃8:

+
8$t>8+

8$ >̃8:
+
8$t>8+

8"

+Qb$0!>̃8:
0
8$t>8+

8$ >̃8:
0
8$t>8+

8"+Qb$−!>̃8:
−
8$t>8+

8$ >̃8:
−
8$t>8+

8"
]

(5)

K and K′ do not depend on t$ 6− or 6+.

Also, since #̄∗$6b = #̄∗b+ “lower order” and :6
4$t satisfies (2), commuting #̄∗$6b by

:6
4$t creates error terms of order 0 that do not depend on t or 6, although the lower

order terms may themselves depend on t and 6.

4. The Basic Estimate

The goal of this section is to prove a basic estimate for smooth forms on M .

Proposition 4.1. Let M ⊂ !N be a compact, orientable CR-manifold of hypersurface
type of dimension 2n− 1 and 1 ≤ q ≤ n− 2. Assume that M admits functions 61 and 62
where 61 is a q-compatible function and 62 is an !n− 1− q"-compatible function with
positivity constants B6+ and B6− , respectively. Let + ∈ Dom!#̄b" ∩Dom!#̄∗b". Set

6+ =
{
t61 if mq < q

−t61 if mq > q

and

6− =
{
−t62 if mn−1−q < n− 1− q

t62 if mn−1−q > n− 1− q
%

There exist constants K, K±, and K′
± where K does not depend on 6+ and 6− so that

tB±)))+)))2± ≤ KQb$±!+$ +"+ K)))+)))2± + K±
∑

8

∑

J∈"q

&>̃8:̃ 0
8$t>8+

8
J&20 + K′

±&+&2−1%

The constant B± = min,B6+$B6−-.

For Theorem 1.1, we will use 61 = 62 = )z)2.
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4.1. Local Estimates

The crucial multilinear algebra that we need is contained in the following lemma
from Straube [16]:

Lemma 4.2. Let B = !bjk"1≤j$k≤n be a Hermitian matrix and 1 ≤ q ≤ n. The following
are equivalent:

(i) If u ∈ *!0$q", then ∑K∈"q−1

∑n
j$k=1 bjkujKukK ≥ M)u)2.

(ii) The sum of any q eigenvalues of B is at least M .
(iii)

∑q
s=1
∑n

j$k=1 bjkt
s
j t

s
k ≥ M whenever t1$ % % % $ tq are orthonormal in !n.

We work on a fixed U = U8. On this neighborhood, as above, there exists an
orthonormal basis of vector fields L1$ % % % $Ln, (L1$ % % % $(Ln so that

.Lj$(Lk/ = cjkT +
n−1∑

?=1

!d?jkL? − d̄?kj(L?" (6)

if 1 ≤ j$ k ≤ n− 1, and T = Ln −(Ln. Note that cjk are the coefficients of the Levi
form. Recall that(L∗$+,(L∗, and(L∗$− are the adjoints of(L in !·$ ·"6+ , !·$ ·"0, and !·$ ·"6− ,
respectively. From (4), we see that

(L∗$6
j = −Lj + Lj6− fj

and plugging this into (6), we have

.(L∗$6
j $(Lk/ = −cjkT +

n−1∑

?=1

(
d?jk!(L∗$6

? − L?6+ f?"+ d̄?kj(L?
)
−(LkLj6+(Lkfj% (7)

Because of Lemma 3.4, we may turn our attention to the quadratic

Qb$6!+$ +" = !#̄b+$ #̄b+"6 + !#̄∗$6b +$ #̄
∗$6
b +"6%

We introduce the error term

E!+" ≤ C

(

&+&26 +
n−1∑

j=1

)!h(Lj+$ +"6)
)

= C

(

&+&26 +
n−1∑

j=1

)!h̃(L∗$6
j +$ +"6)

)

where the operators (Lj and (L∗$6
j act componentwise, C is a constant independent of

+ and 6, and h and h̃ are bounded functions that are independent of t, A, 6+, 6−,
and the other quantities that are carefully minding. Recall the definition that +jK =∑

J∈"q
<jKJ +J . As in the proof of Lemma 4.2 in [13], we compute that for smooth +

supported in a sufficiently small neighborhood,

Qb$6!+$ +" =
∑

J∈"q

n−1∑

j=1

&(Lj+J&26 +
∑

I∈"q−1

n−1∑

j$k=1

Re
(
cjkT+jI$ +kI

)
6
+ E!+"
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148 Harrington and Raich

+
∑

I∈"q−1

n−1∑

j$k=1

{
1
2

(
!(LjLk6+ Lj

(Lk6"+jI$ +kI

)
6

+ 1
2

n−1∑

?=1

(
!d?jkL?6+ d?jk(L?6"+jI$ +kI

)
6

}

% (8)

The weak Z!q"-hypothesis suggests that we ought to integrate by parts to take
advantage of the positivity/negativity conditions. By (7) and integration by parts,
we have

&(Lj+J&26 − &(L∗$6
j +J&26 = −Re!cjjT+J $ +J "−

n−1∑

?=1

Re
(
d?jj!L?6"+J $ +J

)

−Re!!(LjLj6"+J $ +J "+ E!+"% (9)

Consequently, we can use (7) and (9) to obtain

Qb$6!+$ +"

=
∑

J∈"q

{
m∑

j=1

&(L∗$6
j +J&26 +

n−1∑

j=m+1

&(Lj+J&26
}

+ E!+"

+
∑

I∈"q−1

n−1∑

j$k=1

Re
(
cjkT+jI$ +kI

)
6
−
∑

J∈"q

m∑

j=1

Re
(
cjjT+J $ +J

)
6

+
∑

I∈"q−1

n−1∑

j$k=1

{
1
2

(
!(LjLk6+ Lj

(Lk6"+jI$ +kI

)
6
+ 1

2

n−1∑

?=1

(
!d?jkL?6+ d?jk(L?6"+jI$ +kI

)
6

}

−
∑

J∈"q

m∑

j=1

{
1
2

(
!(LjLj6+ Lj

(Lj6"+J $ +J

)
6
+ 1

2

n−1∑

?=1

(
!d?jjL?6+ d?jj(L?6"+J $ +J

)
6

}

%

(10)

We are now in a position to control the “bad” direction terms. Recall the
following consequence of the sharp Gårding inequality from [13].

Proposition 4.3. Let R be a first order pseudodifferential operator such that =!R" ≥ @
where @ is some positive constant and !hjk" a hermitian matrix (that does not depend
on 9). Then there exists a constant C such that if the sum of any q eigenvalues of !hjk"
is nonnegative, then

Re
{ ∑

I∈"q−1

n−1∑

j$k=1

(
hjkRujI$ ukI

)}
≥ @Re

∑

I∈"q−1

n−1∑

j$k=1

(
hjkujI$ ukI

)
− C&u&2$

and if the sum of any collection of !n− 1− q" eigenvalues of !hjk" is nonnegative, then

Re
{ ∑

J∈"q

n−1∑

j=1

(
hjjRuJ $ uJ

)
−
∑

I∈"q−1

n−1∑

j$k=1

(
hjkRujI$ ukI

)}
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≥ @Re
{ ∑

J∈"q

n−1∑

j=1

(
hjjuJ $ uJ

)
−
∑

I∈"q−1

n−1∑

j$k=1

(
hjkujI$ ukI

)}
− C&u&2%

Note that !hjk" may be a matrix-valued function in z but may not depend on 9.
The following lemma is the analog of Lemma 4.6 in [13].

Lemma 4.4. Let M be as in Theorem 1.2 and + a !0$ q"-form supported on U so that
up to a smooth term +̂ is supported in %+. Let

!h+
jk" = !cjk"− 2jk

1
q

m∑

?=1

c??%

Then

Re
{ ∑

I∈"q−1

n−1∑

j$k=1

(
h+
jkT+jI$ +kI

)
6

}
≥ tARe

{ ∑

I∈"q−1

n−1∑

j$k=1

(
h+
jk+jI$ +kI

)
6

}

− O!&+&26"− Ot!&>̃8:̃ 0
t +&20"%

where the constant in O!&+&26" does not depend on t.

Proof. Observe that the eigenvalues of !h+
jk" are 4j − 1

q

∑m
?=1 c??, so the smallest

possible sum of any q eigenvalues of !h+
jk" is

41 + · · · + 4q −
m∑

?=1

c?? ≥ 0%

With this inequality in hand, we employ the argument of Proposition 4.6 from [13]
with the following changes. First, we replace cjk with h+

jk. Also, we replace the A with
tA (for example, the sentence “By construction, 92n−1 ≥ A in %+ · · · ” gets replaced
by “By construction, 92n−1 ≥ tA in %+ · · · ”). !

Observe that

∑

I∈"q−1

n−1∑

j$k=1

Re
(
cjkT+jI$ +kI

)
6
−
∑

J∈"q

m∑

j=1

Re
(
cjjT+J $ +J

)
6

= Re
{ ∑

I∈"q−1

n−1∑

j$k=1

(
h+
jkT+jI$ +kI

)
6

}
% (11)

Now that we can eliminate the T terms, we turn to controlling the
remaining terms.

Proposition 4.5. Let + ∈ Dom!#̄b" ∩Dom!#̄∗b" be a !0$ q"-form supported in U .
Assume that 6 is a q-compatible function with positivity constant B6+ . If m < q, choose
6+ = t6 and if m > q, choose 6+ = −t6. Then there exists a constant C that is
independent of B6+ so that

Qb$+!>̃:
+
t +$ >̃:

+
t +"+ C&>̃:+

t +&26+ + Ot!&>̃:̃ 0
t +&20" ≥ tB6+&>̃:+

t +&26+ %
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Proof. Let

s+jk =
1
2
!(LkLj6

+ + Lj
(Lk6

+"+ 1
2

n−1∑

?=1

!d?jkL?6
+ + d?kj(L?6+"

and

r+jk = s+jk −
1
q
2jk

m∑

?=1

s??%

In this case (10) can be rewritten as

Qb$+!&$ &" =
∑

J∈"q

{ m∑

j=1

&(L∗$+
j &J&26+ +

n−1∑

j=m+1

&(Lj&J&26+
}
+ E!+"

+
∑

I∈"q−1

n−1∑

j$k=1

Re
(
!r+jk + h+

jkT"&jI$ &kI

)+
6
%

As noted in [12, 13], one can check that if L =∑n−1
j=1 9jLj (where 9j is constant), then

〈
1
2

(
#b#̄b6

+ − #̄b#b6+
)
$L ∧(L

〉
=

n−1∑

j$k=1

s+jk9j 9̄k%

This means that s+jk = 7+
jk − 1

28!6
+"cjk. Thus, if

A6
+

jk = 76+jk − 1
q
2jk

m∑

?=1

76
+
??

then

Qb$+!&$ &" =
∑

J∈"q

{ m∑

j=1

&(L∗$+
j &J&26+ +

n−1∑

j=m+1

&(Lj&J&26+
}
+ E!+"

+
∑

I∈"q−1

n−1∑

j$k=1

Re
((
A6

+
jk + h+

jk

(
T − 1

2
8!6+"

))
&jI$ &kI

)

6+
%

Next, we replace & with >̃:+
t +. Since supp >̃ ⊂ U ′, the Fourier transform of

>̃:+
t + is supported in %+ up to a smooth smooth term, we can use Lemma 4.4 to

control the T terms. Therefore, from (10) and the form of E!+", we have that

Qb$+!>̃:
+
t +$ >̃:

+
t +" ≥ !1− <"

∑

J∈"q

{ m∑

j=1

&(L∗$+
j >̃:+

t +J&26+ +
n−1∑

j=m+1

&(Lj >̃:
+
t +J&26+

}

+
∑

I∈"q−1

n−1∑

j$k=1

Re
((
A6

+
jk + h+

jk

(
tA− 1

2
8!6+"

))
>̃:+

t +jI$ >̃:
+
t +kI

)

6+

− O!&>̃:+
t +&20"− Ot!&>̃8:̃ 0

t +&20"%
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If we choose A ≥ 1
2 )8!6"), then tA− 1

28!6
+" ≥ 0. Since the sum of any q eigenvalues

of !h+
jk" is nonnegative, these terms are strictly positive. If m < q, then the sum of

any q eigenvalues of A6+ is the sum of q eigenvalues of t76 minus the sum of the
first m diagonal terms of t76. If m > q, the sum of any q eigenvalues of A6+ is the
sum of the first m diagonal terms of t76 minus the sum of q eigenvalues of t76. In
either case, by the q-compatibility of 6, we know that this sum is at least tB6+ where
B6+ is the positivity constant of 6. By Lemma 4.2, this means that

Qb$+!>̃:
+
t +$ >̃:

+
t +"+ C&>̃:+

t +&20 + Ot!&>̃8:̃ 0
t +&20" ≥ tB6+&>̃:+

t +&26+ % !

Observe that the statement of Proposition 4.5 is independent of the choice
of local coordinates L1$ % % % $Ln−1 and m 4= q. Hence, to handle the terms with
support in %−, we may choose new local coordinates and a new value of m so that
Definitions 2.5 and 2.7 hold with !n− 1− q" in place of q. We again integrate (8)
by parts and compute

Qb$6!+$ +"

=
∑

J∈"q

{ m∑

j=1

&(Lj+J&26 +
n−1∑

j=m+1

&(L∗$6
j +J&26

}
+ E!+"

+
∑

I∈"q−1

n−1∑

j$k=1

Re
(
cjkT+jI$ +kI

)
6
−
∑

J∈"q

n−1∑

j=m+1

Re
(
cjjT+J $ +J

)
6

+
∑

I∈"q−1

n−1∑

j$k=1

{
1
2

(
!(LjLk6+ Lj

(Lk6"+jI$ +kI

)
6
+ 1

2

n−1∑

?=1

(
!d?jkL?6+ d?jk(L?6"+jI$ +kI

)
6

}

−
∑

J∈"q

n−1∑

j=m+1

{
1
2

(
!(LjLj6+ Lj

(Lj6"+J $ +J

)
6
+ 1

2

n−1∑

?=1

(
!d?jjL?6+ d?jj(L?6"+J $ +J

)
6

}

%

(12)

By the argument of Lemma 4.4, we can also establish the following:

Lemma 4.6. Let M be as in Theorem 1.2 and + be a !0$ q"-form supported on U so
that up to a smooth term, +̂ is supported in %−. Let

!h−
jk" = !cjk"− 2jk

1
n− 1− q

m∑

?=1

c??%

Then

∑

J∈"q

n−1∑

j=1

(
h−
jj!−T"+J $ +J

)
6
−
∑

I∈"q−1

n−1∑

j$k=1

(
h−
jk!−T"+jI$ +kI

)
6

≥ tA

( ∑

J∈"q

n−1∑

j=1

(
h−
jj+J $ +J

)
6
−
∑

I∈"q−1

n−1∑

j$k=1

(
h−
jk+jI$ +kI

)
6

)
+ O!&+&26"+ Ot!&>̃8:̃ 0

t +&20"%

In a similar fashion to (11), we have the equality
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∑

J∈"q

n−1∑

j=m+1

Re
(
cjjT+J $ +J

)
6
−
∑

I∈"q−1

n−1∑

j$k=1

Re
(
cjkT+jI$ +kI

)
6

= Re
{ ∑

J∈"q

n−1∑

j=1

(
h−
jjT+J $ +J

)
6
−
∑

I∈"q−1

n−1∑

j$k=1

(
h−
jkT+jI$ +kI

)
6

}
% (13)

Applying these to the proof of Proposition 4.5, we obtain

Proposition 4.7. Let + ∈ Dom!#̄b" ∩Dom!#̄∗b" be a !0$ q"-form supported in U .
Assume that 6 is an !n− 1− q"-compatible function with positivity constant B6− . If m >
n− 1− q, choose 6− = t6 and if m < n− 1− q, choose 6− = −t6. Then there exists a
constant C that is independent of B6− so that

Qb$−!>̃:
−
t +$ >̃:

−
t +"+ C&>̃:−

t +&26− + Ot!&>̃:̃ 0
t +&20" ≥ tB6−&>̃:−

t +&26− %

We are now ready to prove the basic estimate, Proposition 4.1.

Proof [Proposition 4.1]. From (5), there exist constants K, K±, and K′ so that

KQb$±!+$ +"+ K±
∑

8

&>̃8:̃ 0
8$t>8+

8&20 + K′&+&20 + O±!&+&2−1"

≥
∑

8

[
Qb$+!>̃8:

+
8$t>8+

8$ >̃8:
+
8$t>8+

8"+Qb$−!>̃8:
−
8$t>8+

8$ >̃8:
−
8$t>8+

8"
]
%

From Propositions 4.5 and 4.7 it follows that by increasing the size of K, K±, and
K′

KQb$±!+$ +"+ K±
∑

8

&>̃8:̃ 0
8$t>8+

8&20 + K′&+&20 + O±!&+&2−1" ≥ tB±&+&20

where B± = min,B6−$B6+-. !

4.2. A Sobolev Estimate in the “Elliptic Directions”

For forms whose Fourier transforms are supported up to a smooth term in %0,
we have better estimates. The following results are in [12, 13].

Lemma 4.8. Let + be a !0$ 1"-form supported in U8 for some 8 such that up to a smooth
term, +̂ is supported in %̃8

0. There exist positive constants C > 1 and C1 > 0 so that

CQb$±!+$H±+"+ C1&+&20 ≥ &+&21%

The proof in [12] also holds at level !0$ q".
We can use Lemma 4.8 to control terms of the form &>̃8: 0

8$t>8+
8&20.

Proposition 4.9. For any < > 0, there exists C<$± > 0 so that

&>̃8: 0
8$t>8+

8&20 ≤ <Qb$±!+
8$ +8"+ C<$±&+8&2−1%

See [13] for a proof of this proposition.
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5. Regularity Theory for !̄b

5.1. Closed Range for !b"±.

For 1 ≤ q ≤ n− 2, let

#q
± = ,+ ∈ Dom!#̄b" ∩Dom!#̄∗b" ' #̄b+ = 0$ #̄∗b$±+ = 0-

= ,+ ∈ Dom!#̄b" ∩Dom!#̄∗b" ' Qb$±!+$ +" = 0-

be the space of ±-harmonic !0$ q"-forms.

Lemma 5.1. Let M2n−1 be a smooth, embedded CR-manifold of hypersurface type that
admits a q-compatible function 6+ and an !n− 1− q"-compatible function 6−. If t > 0
is suitably large and 1 ≤ q ≤ n− 2, then

(i) #q
± is finite dimensional;

(ii) There exists C that does not depend on 6+ and 6− so that for all !0$ q"-forms + ∈
Dom!#̄b" ∩Dom!#̄∗b" satisfying + ⊥ #q

± (with respect to -·$ ·.±) we have

)))+)))2± ≤ CQb$±!+$ +"% (14)

Proof. For + ∈ #±, we can use Proposition 4.1 with t suitably large (to absorb
terms) so that

tB±)))+)))2± ≤ C±

(∑

8

&>̃8: 0
8$t>4+

8&20 + &+&2−1

)
%

Also, by Proposition 4.9,

∑

8

&>̃8: 0
8$t>4+

8&20 ≤ C±&+&2−1%

since Qb$±!+$ +" = 0. Therefore the unit ball in #± ∩ L2!M" is compact, and hence
#± is finite dimensional.

Assume that (14) fails. Then there exists +k ⊥ #± with )))+k)))± = 1 so that

)))+k)))2± ≥ kQb$±!+k$ +k"% (15)

For k suitably large, we can use Proposition 4.1 and the above argument to absorb
Qb$±!+k$ +k" by B±)))+k)))± to get:

)))+k)))2± ≤ C±&+k&2−1% (16)

Since L2!M" is compact in H−1!M", there exists a subsequence +kj
that converges in

H−1!M". However, (16) forces +kj
to converge in L2!M" as well. Although the norm

!Qb$±!·$ ·"+ ))) · )))2±"1/2 dominates the L2!M"-norm, (15) applied to +jk
shows that +jk

converges in the !Qb$±!·$ ·"+ ))) · )))2±"1/2 norm as well. The limit + satisfies )))+)))± = 1
and + ⊥ #±. However, a consequence of (15) is that + ∈ #±. This is a contradiction
and (14) holds. !
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Let

⊥#q
± = ,+ ∈ L2

0$q!M" ' -+$&.± = 0$ for all & ∈ #q
±-%

On ⊥#q
±, define

!b$± = #̄b#̄∗b$± + #̄∗b$±#̄b%

Since #̄∗b$± = H±#̄
∗
b + .#̄∗b$H±/, Dom!#̄∗b$±" = Dom!#̄∗b". This causes

Dom!!b$±" = ,+ ∈ L2
0$q!M" ' + ∈ Dom!#̄b" ∩Dom!#̄∗b"$ #̄b+ ∈ Dom!#̄∗b"$ and

#̄∗b+ ∈ Dom!#̄b"-%

6. Proof of Theorem 1.2

6.1. Closed Range in L2

From Remark 2.8, we know that )z)2 is a q-compatible functions with a positivity
constant of 1. Thus, for suitably large t, the space of harmonic !0$ q"-forms #q

t '=
#q

± is finite dimensional. Moreover, if we use -·$ ·.t for -·$ ·.± and Qb$t for Qb$±, then
for + ⊥ #q

t (with respect to -·$ ·.t)

)))+)))2t ≤ CQb$t!+$ +"% (17)

From Hörmander [8, Theorem 1.1.2], (17) is equivalent to the closed range of
#̄b ' L

2
0$q!M"→ L2

0$q+1!M" and #̄∗b$t ' L
2
0$q!M"→ L2

0$q−1!M" where both operators are
defined with respect to -·$ ·.t. By Hörmander [8, Theorem 1.1.1], this means that #̄∗b$t '
L2
0$q+1!M"→ L2

0$q!M" and #̄b ' L2
0$q−1!M"→ L2

0$q!M" also have closed range. Thus,
the Kohn Laplacian !b$t on !0$ q"-forms also has closed range and Gq$t exists and
is a continuous operator on L2

0$q!M".

6.2. Hodge Theory and the Canonical Solutions Operators

We now prove the existence of a Hodge decomposition and the existence of the
canonical solution operators. Unlike the standard computations for the #̄-Neumann
operators and complex Green operators in the pseudoconvex case, we only have
the existence of the complex Green operator Gq$t at a fixed level q and not for all
1 ≤ q ≤ n− 1. (hence, we cannot commute Gq$t with either #̄b or #̄∗b$t). If H

q
t is the

projection of L2
0$q!M" onto #q

t = null!#̄b" ∩ null!#̄∗b$t" = ,+ ∈ L2
0$q!M" ∩Dom!#̄b" ∩

Dom!#̄∗b$t" ' Qb$t!+$ +" = 0-, then we know

+ = #̄b#̄∗b$tGq$t++ #̄∗b$t#̄bGq$t++Hq
t +%

We now find the canonical solution operators. Let + be a #̄b-closed !0$ q"-form that
is orthogonal to #q

t . Then Hq
t + = 0, so

+ = #̄b#̄∗b$tGq$t++ #̄∗b$t#̄bGq$t+%
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We claim that #̄∗b$t#̄bGq$t+ = 0. Following [12], we note that

0 = #̄b+ = #̄b#̄∗b$t#̄bGq$t+$

so

0 = -#̄b#̄∗b$t#̄bGq$t+$ #̄bGq$t+.t = )))#̄∗b$t#̄bGq$t+)))2t %

Thus, #̄∗b$t#̄bGq$t+ = 0 and the canonical solution operator to #̄b is given by #̄∗b$tGq$t.
A similar argument shows that the canonical solution operator for #̄∗b$t is given by
#̄bGq$t.

In this paragraph, we will assume that all forms are perpendicular to #q
t . For

+ ∈ Dom!!b$t", it follows that

+ = Gq$t!b$t+ = !b$tGq$t+%

We will show that

#̄b#̄
∗
b$tGq$t = Gq$t#̄b#̄

∗
b$t and #̄∗b$t#̄bGq$t = Gq$t#̄

∗
b$t#̄b% (18)

Observe that

#̄b( = 0 8⇒ ( = #̄b#̄∗b$tGq$t( = Gq$t#̄b#̄
∗
b$t( (19)

and

#̄∗b$tB = 0 8⇒ B = #̄∗b$t#̄bGq$tB = Gq$t#̄
∗
b$t#̄bB% (20)

Next, we claim that

#̄b+ = 0 8⇒ #̄bGq+ = 0 (21)

and

#̄∗b$t+ = 0 8⇒ #̄∗b$tGq+ = 0% (22)

Indeed, we have that + ⊥ #q
t , so + = #̄b#̄∗b$tGq$t++ #̄∗b$t#̄bGq$t+. Since Range

#̄∗b$t ⊥ null #̄b, #̄b+ = 0 implies that #̄∗b$t#̄bGq$t+ = 0. Since Range!#̄b" ⊥ null!#̄∗b$t",
#̄∗b$t#̄bGq$t+ = 0 implies #̄bGq$t+ = 0, as desired. A similar argument shows (22). To
show (18), observe that we can write + = (+ B where #̄b( = 0 and #̄∗b$tB = 0. Thus,
by (19) and (22),

#̄b#̄
∗
b$tGq$t+ = #̄b#̄∗b$tGq$t!(+ B" = #̄b#̄∗b$tGq$t( = Gq$t#̄b#̄

∗
b$t( = Gq$t#̄b#̄

∗
b$t+%

A similar argument with (20) and (21) proves that #̄∗b$t#̄bGq$t+ = Gq$t#̄
∗
b$t#̄b+, finishing

the proof of (18).

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
R
a
i
c
h
,
 
A
n
d
r
e
w
]
 
A
t
:
 
1
5
:
1
2
 
2
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



156 Harrington and Raich

6.3. Closed Range of !̄b # H
s
0"q$M% → Hs

0"q+1$M% and !̄∗
b"t # H

s
0"q$M% → Hs

0"q−1$M%

We start with an argument to show closed range of #̄b ' Hs
0$q!M"→ Hs

0$q+1!M"

and #̄∗b$t ' H
s
0$q!M"→ Hs

0$q−1!M". Combining Proposition 4.1 and Lemma 4.8, if t is
sufficiently large, then

)))*s+)))2t ≤
C

t

(
)))#̄b*s+)))2t + )))#̄∗b$t*s+)))2t

)
+ Ct&u&2s−1

≤ C

t

(
)))*s#̄b+)))2t + )))*s#̄∗b$t+)))2t + ))).#̄b$ *s/+)))2t + ))).#̄∗b$t$ *s/+)))2t

)
+ Ct&+&2s−1%

As a consequence of Lemma 3.3, .#̄∗b$t$ *
s/ = Ps + tPs−1 where Ps and Ps−1 are

pseudodifferential operators of order s and s − 1, respectively. Additionally, .#̄b$ *s/
is a pseudodifferential operator of order s. Consequently,

)))*s+)))2t ≤
C

t

(
)))*s#̄b+)))2t + )))*s#̄∗b$t+)))2t + )))*s+)))2t

)
+ Ct&+&2s−1%

Choosing t large enough and + ∈ Hs
0$q!M" allows us to absorb terms to prove

&+&2s = &*s+&20 ≤ Ct)))*s+)))2t ≤ Ct

(
)))*s#̄b+)))2t + )))*s#̄∗b$t+)))2t + &+&2s−1

)

≤ Ct

(
&#̄b+&2s + &#̄∗b$t+&2s + &+&2s−1

)
%

Thus, #̄b ' Hs
0$q!M"→ Hs

0$q+1!M" and #̄
∗
b$t ' H

s
0$q!M"→ Hs

0$q−1!M" have closed range.

6.4. Continuity of the Complex Green Operator in Hs
0"q$M%

We now turn to the harder problem of showing continuity of the complex Green
operator G2

q$t in Hs
0$q!M", s > 0. We use an elliptic regularization argument. Let

Q2
b$t!·$ ·" be the quadratic form on H1

0$q!M" defined by

Q2
b$t!u$ v" = Qb$t!u$ v"+ 2Qdb

!u$ v"

where Qdb
is the hermitian inner product associated to the de Rham exterior

derivative db, i.e., Qdb
!u$ v" = -dbu$dbv.t + -d∗

bu$d
∗
bv.t. The inner product Qdb

has
form domain H1

0$q!M". Consequently, Q
2
b$t gives rise to a unique, self-adjoint, elliptic

operator !2
b$t with inverse G2

q$t.
From Proposition 4.1 and Lemma 4.8, if t is large enough, then for + ∈

Dom!#̄b" ∩Dom!#̄∗b$t", we have the estimate

)))+)))2t ≤
K

t
Qb$t!+$ +"+ Ct&+&2−1% (23)

Now let + ∈ Hs
0$q!C". Since !2

b$t is elliptic, G
2
q$t+ ∈ Hs+2

0$q !M". Then

&G2
q$t+&2s = &*sG2

q$t+&20 ≤ Ct)))*sG2
q$t+)))2t % (24)
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We now concentrate on finding a bound for )))*sG2
q$t+)))2t that is independent of 2.

By (23),

)))*sG2
q$t+)))2t ≤

K

t
Qb$t!*

sG2
q$t+$*

sG2
q$t+"+ Ct$s&G2

q$t+&2s−1% (25)

Observe that if !*s"∗$t is the adjoint of *s under the inner product -·$ ·.t, then

-*su$ v.t = !u$ *sH−1
t v"0 = -u$Ht*

sH−1
t v.t = -u$ !*s + .Ht$ *

s/H−1
t "v.t

implies that !*s"∗$t = *s + .Ht$ *
s/H−1

t . Therefore, it is a standard consequence of
[10, Lemma 3.1] (or [7, Lemma 2.4.2]) that

Qb$t!*
sG2

q$t+$*
sG2

q$t+" ≤ Q2
b$t!*

sG2
q$t+$*

sG2
q$t+"

≤ )-*s+$*sG2
q$t+.t)+ C&G2

q$t+&2s + Ct$s&G2
q$t+&2s−1

≤ )))*s+)))t)))*sG2
q$t+)))t + &G2

q$t+&2s−1

≤ Kt&+&2s + C)))*sG2
q$t+)))2t + Ct$s&G2

q$t+&2s−1 (26)

where C > 0 does not depend on 2 or t.
Plugging (26) into (25), we see that

)))*sG2
q$t+)))2t ≤

K

t

(
Kt&+&2s + C)))*sG2

q$t+)))2t
)
+ Ct$s&G2

q$t+&2s−1%

If t is sufficiently large, then it follows that

)))*sG2
q$t+)))2t ≤ Kt&+&2s + Ct$s&G2

q$t+&2s−1 (27)

since )))*sG2
q$t+)))2t < ! (recall that G2

q$t+ ∈ Hs+2
0$q !M"). Plugging (27) into (24), we have

the bound

&G2
q$t+&2s ≤ Kt&+&2s + Ct$s&G2

q$t+&2s−1% (28)

We now turn to letting 2→ 0. Observe that Kt and Ct%s are independent of 2. We
have shown that if + ∈ Hs

0$q!M", then ,G
2
q$t+ ' 0 < 2< 1- is bounded in Hs

0$q!M".
Thus, there exists a sequence 2k → 0 and ũ ∈ Hs

0$q!M" so that G2k
q$tu → ũ weakly in

Hs
0$q!M". Consequently, if v ∈ Hs+2

0$q !M", then

lim
k→!

Q2k
b$t!G

2k
q$tu$ v" = Qb$t!ũ$ v"%

However,

Q2k
b$t!G

2k
q$tu$ v" = !u$ v" = Qb$t!Gq$tu$ v"$

so Gq$tu = ũ and (28) is satisfied with 2 = 0. Thus, Gq$t is a continuous operator on
Hs

0$q!M".
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6.5. Continuity of the Canonical Solution Operators in Hs
0"q$M%

Continuity of #̄bGq$t and #̄∗b$tGq$t will follow from the continuity of Gq$t.
Unfortunately, we cannot apply Proposition 4.1 to either #̄bGq$t+ or #̄∗b$tGq$t+
because neither are !0$ q"-forms. Instead, we estimate directly:

&#̄bGq$t+&2s + &#̄∗b$tGq$t+&2s ≤ Ct!)))*s#̄bGq$t+)))2t + )))*s#̄∗b$tGq$t+)))2t "

= Ct

(
-*s+$*sGq$t+.t + -*s#̄bGq$t+$ .*

s$ #̄b/Gq$t+.t + -.#̄∗b$t$ *s/#̄bGq$t+$*
sGq$t+.t

+ -*s#̄∗b$tGq$t+$ .*
s$ #̄∗b$t/Gq$t+.t + -.#̄b$ *s/#̄∗b$tGq$t+$*

sGq$t+.t
)

≤ Ct$s!&+&2s + &Gq$t+&2s " ≤ Ct$s&+&2s %

6.6. The Szegö Projection Sq"t

The Szegö projection Sq$t is the projection of L2
0$q!M" onto ker #̄b. We claim that

Sq$t = I − #̄∗b$t#̄bGq$t = I −Gq$t#̄
∗
b$t#̄b%

The second equality follows from (18). Observe that if + ∈ null!#̄b", then !I −
Gq$t#̄

∗
b$t#̄b"+ = +, as desired. If + ⊥ null!#̄b", then + ⊥ #q

t , so + = #̄∗b$t#̄bGq$t++
#̄b#̄

∗
b$tGq$t+. We claim that + = #̄∗b$t#̄bGq$t+. Let u = #̄∗b$t#̄bGq$t+. Then u is the

canonical solution to #̄bu = #̄b+, so #̄b!+− u" = 0. However, + ⊥ null!#̄b", so u = +,
and 0 = +− u = !I − #̄∗b$t#̄bGq$t"+, as desired.

Proposition 6.1. Let M be as in Theorem 1.2. If t ≥ Ts, then the Szegö kernel Sq$t is
continuous on Hs

0$q!M".

Proof. This argument uses ideas from [3]. Given + ∈ L2
0$q!M", we know that

#̄∗b$t#̄bGq$t+ ∈ L2
0$q!M", but we have no quantitative bound. However,

)))#̄∗b$t#̄bGq$t+)))2t = -#̄b#̄∗b$t#̄bGq$t+$ #̄bGq$t+.t = -#̄b+$ #̄bGq$t+.t ≤ )))+)))t)))#̄∗b$t#̄bGq$t+)))t%

This proves continuity in L2
0$q!M".

Now let s > 0. It suffices to show

)))*s#̄∗b$t#̄bGq$t+)))2t ≤ Cs$t)))*s+)))2t % (29)

We cannot simply integrate by parts as in the L2-case because we do not know
if *s#̄∗b$t#̄bSq$t+ is finite. As above, we can avoid this issue by an elliptic regularity
argument. Using the operators G2

q$t from §6.4, we have (if 2 is small enough)

)))*s#̄∗b$t#̄bG
2
q$t+)))2t = -*s#̄b#̄

∗
b$t#̄bG

2
q$t+$*

s#̄bG
2
q$t+.t + -.#̄b$ *s/#̄∗b$t#̄bG

2
q$t+$*

s#̄bG
2
q$t+.t

+ -*s#̄∗b$t#̄bG
2
q$t+$ .*

s$ #̄∗b$t/#̄bG
2
q$t+.t

≤ Cs$t!)))*s+)))t + )))*s#̄bG
2
q$t+)))t")))*s#̄∗b$t#̄bG

2
q$t+)))t%
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Using that the continuity of #̄bG2
q$t in Hs

0$q!M" is uniform in 2 (for small 2), we have

)))*s#̄∗b$t#̄bG
2
q$t+)))t ≤ Cs$t!)))*s+)))t + )))*s#̄bGq$t+)))t" ≤ Cs$t)))*s+)))t% (30)

As earlier, we can take an appropriate limit as 2→ 0 to establish the bound in (30)
with 2 = 0. !

6.7. Results for Levels $0" q − 1% and $0" q + 1%

We now show continuity of the canonical solution operators Gq$t#̄
∗
b$t ' H

s
0$q+1!M"→

Hs
0$q!M" and Gq$t#̄b ' H

s
0$q−1!M"→ Hs

0$q!M", and the Szegö projection Sq−1$t = I −
#̄∗b$tGq$t#̄b ' H

s
0$q−1!M"→ Hs

0$q−1!M". We cannot express the Szegö kernel of !0$ q +
1"-forms in terms of Gq$t because the only candidate is #̄bGq$t#̄

∗
b$t, but this object

annihilates t-harmonic forms (which ought to remain unchanged by Sq+1$t). Since
Hs+1

0$q−1!M" is dense in Hs
0$q−1!M" and Gq$t preserves Hs

0$q!M", we may assume that
+ ∈ Hs+1

0$q−1!M". Then

)))*sGq$t#̄b+)))2t =
〈
#̄∗b$tGq$t︸ ︷︷ ︸

bounded in Hs

*sGq$t#̄b+$*
s+

〉

t

+ -*sGq$t#̄b+$ .*
s$Gq$t#̄b/+.t

≤ Cs)))*sGq$t#̄b+)))t)))*s+)))t%

The right hand side is finite since #̄b+ ∈ Hs
0$q!M" by assumption. Thus, Gq$t#̄b '

Hs
0$q−1!M"→ Hs

0$q!M" is bounded. A similar argument shows that Gq$t#̄
∗
b$t '

Hs
0$q+1!M"→ Hs

0$q!M" is continuous.
For the Szegö projection, we investigate the boundedness of

)))*s#̄∗b$tGq$t#̄b+)))2t = -*s#̄b#̄
∗
b$tGq$t#̄b+$*

sGq$t#̄b+.t + -*s#̄∗b$tGq$t#̄b+$ .*
s$ #̄∗b$t/Gq$t#̄b+.t

+-.#̄∗b$t$ *s/#̄∗b$tGq$t#̄b+$*
sGq$t#̄b+.t%

Since #̄b+ is #̄b-closed, #̄b#̄∗b$tGq$t#̄b+ = #̄b+, so

-*s#̄b#̄
∗
b$tGq$t#̄b+$*

sGq$t#̄b+.t = -*s+$*s#̄∗b$tGq$t#̄b+.t + -.*s$ #̄b/+$*
sGq$t#̄b+.t

+ -*s+$ .*s$ #̄∗b$t/Gq$t#̄b+.t
≤ Cs!)))*s+)))t)))*s#̄∗b$tGq$t#̄b+)))t + )))*s+)))2t "%

Thus, we have

)))*s#̄∗b$tGq$t#̄b+)))2t ≤ Cs$t!)))*s+)))t)))*s#̄∗b$tGq$t#̄b+)))t + )))*s+)))2t "%

Using a small constant/large constant argument and absorbing terms, we have the
continuity of the Szegö projection in Hs

0$q−1!M".
The continuity of the solution operator #̄∗b$tGq$t immediately gives closed range

of #̄b from Hs
0$q−1!M" to Hs

0$q!M". Similarly, the boundedness of the operator #̄bGq$t

immediately gives closed range of #̄∗b from Hs
0$q+1!M" to Hs

0$q!M".
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6.8. Exact and Global Regularity for !̄b

In this section, we prove that if ( ∈ C!
0$q̃+1!M" satisfies #̄b( = 0 and ( ⊥ # q̃

t ,
then there exists u ∈ C!

0$q̃!M" so that #̄bu = ( where q̃ = q or q − 1. We follow the
argument in [12, Lemma 5.10]. We start by showing that if k is fixed and s > k,
then Hs

0$q̃!M" ∩ null!#̄b" is dense in Hk
0$q̃!M" ∩ null!#̄b". Let g ∈ Hk

0$q̃!M" ∩ null!#̄b".
Since C!

0$q̃!M" is dense in Hk
0$q̃!M", there exists a sequence gj ∈ C!

0$q̃!M" so that gj →
g in Hk

0$q̃!M". Let t ≥ Ts and set g̃j = Sq̃$tgj . By the continuity of Sq̃$t in Hs
0$q̃!M",

g̃j ∈ Hs
0$q̃!M". Moreover, since g = Sq̃$tg, it follows that

lim
j→!

&g̃j − g&2k = lim
j→!

&Sq̃$t!gj − g"&2k ≤ Ck$t lim
j→!

&gj − g&2k = 0%

Next, since ( = #̄b#̄∗b$tGq̃$t( or #̄bGq̃$t#̄
∗
b$t( for all sufficiently large t, by choosing

an appropriate sequence tk → !, there exists uk = #̄∗b$tGq̃$tk
( or Gq̃$tk

#̄∗b$t( ∈ Hk
0$q̃!M"

so that #̄buk = (. We will construct a sequence ũk inductively. Let ũ1 = u1. Assume
that ũk has been defined so that ũk ∈ Hk

0$q̃!M", #̄bũk = (, and &ũk − ũk−1&k−1 ≤ 2k−1.
We will now construct ũk+1. Note that #̄b!uk+1 − ũk" = 0. By the density argument
above, there exists vk+1 ∈ Hk+1

0$q̃ !M" ∩ null!#̄b" so that if ũk+1 = uk+1 + vk+1, then
&ũk+1 − ũk&k ≤ 2−k. Finally, set

u = ũ1 +
!∑

k=1

!ũk+1 − ũk" = ũj +
!∑

k=j

!ũk+1 − ũk"$ j ∈ $%

The sum telescopes and it is clear that u ∈ Hj
0$q̃!M" for all j ∈ $ and #̄bu = (. Thus,

u ∈ C!
0$q̃!M".

7. Proof of Theorem 1.1

From (3), we know that weighted L2!M" and L2!M" are equivalent spaces. Thus,
from Theorem 1.2, we know that #̄b ' L2

0$q−1!M"→ L2
0$q!M" and #̄b ' L

2
0$q!M"→

L2
0$q+1!M" have closed range. Again by Hörmander [8, Theorem 1.1.1], this proves

that #̄∗b ' L
2
0$q!M"→ L2

0$q−1!M" and #̄∗b ' L
2
0$q+1!M"→ L2

0$q!M" have closed range.
Consequently, the Kohn Laplacian !b = #̄b#̄∗b + #̄∗b#̄b has closed range on L2

0$q!M"
and the remainder of the theorem follows by standard arguments. This concludes
the proof of Theorem 1.1.

Remark 7.1. This is more quantitative discussion of Remark 1.3. In particular,
from the proof of Theorem 1.1, we have the closed range bound for appropriate
!0$ q"-forms + (using (3)),

&+&20 ≤
1
ct
&+&2t ≤

C

ct
&#̄b+&2t ≤

CCt

ct
&#̄b+&20%

Thus, the closed range constants for #̄b, #̄∗b, and !b in unweighted L2!M" depend on
the size of 6+ and 6−.
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