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Abstract In this article, we give an explicit calculation of the partial Fourier trans-
form of the fundamental solution to the !b-heat equation on quadric submanifolds
M ⊂ Cn × Cm. As a consequence, we can also compute the heat kernel associated
with the weighted ∂-equation in Cn when the weight is given by exp(−φ(z, z) · λ)

where φ : Cn ×Cn →Cm is a quadratic, sesquilinear form and λ ∈Rm. Our method
involves the representation theory of the Lie group M and the group Fourier trans-
form.
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1 Introduction

The purpose of this article is to present an explicit calculation of the Fourier trans-
form of the fundamental solution of the !b-heat equation on quadric submanifolds
M ⊂ Cn × Cm. A quadric submanifold can be thought of as a generalization of the
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Heisenberg group—it is a Lie group with a known representation theory [13], and the
technique of using Hermite functions to compute the heat kernel, as done in [4, 12]
and elsewhere, can be extended to work in this situation as well.

A consequence of our fundamental solution computation is that we can explic-
itly compute the heat kernel associated with the weighted ∂-problem in Cn when
the weight is given by exp(−φ(z, z) · λ) where φ : Cn × Cn → Cm is a quadratic,
sesquilinear form and λ ∈ Rm. This computation partially generalizes the results
in [4]. When m = 1 and the weight is given by exp(τP(z1, . . . , zn)) where τ ∈ R,
P(z1, . . . , zn) = ∑n

j=1 pj (zj ), and pj are subharmonic, nonharmonic polynomials,
Raich [14–17] has estimated the heat kernel associated with the weighted ∂-problem.
If, in addition, n = 1, the weighted ∂-problem and explicit construction of Bergman
and Szegö kernels have been studied by a number of authors in different contexts,
e.g., [1, 6, 8–11]. We also note that quadric manifolds are related to H -type groups
on which Yang and Zhu have computed the heat kernel for the sub-Laplacian [20].
Additionally, although there is some overlap with the results by Calin et al. [5], their
method is based on Hamilton-Jacobi theory in the spirit of Beals et al. [2, 3] and they
only consider the case when φ is diagonal.

The remainder of the paper is organized as follows: in Sect. 2, we define our
terms and state our main results. Section 3 provides the necessary background from
representation theory. In Sects. 4 and 5, we apply the representation theory of M to
the heat kernels and prove the main results.

2 Quadric Submanifolds and the !b-Heat Equation

2.1 Quadric Submanifolds

Let M be the quadric submanifold in Cn ×Cm defined by

M = {(z,w) ∈Cn ×Cm; Imw = φ(z, z)}

where φ : Cn × Cn &→ Cm is a sesquilinear form (i.e., φ(z, z′) = φ(z′, z)). For em-
phasis, we sometimes write Mφ to denote the dependence of M on the quadratic
function φ. Note that M−φ is biholomorphic to Mφ by the change of variables
(z,w) &→ (z,−w).

For λ ∈Rm, let

φλ(z, z′) = φ(z, z′) · λ
where · is the ordinary dot product (without conjugation). Observe that φλ(z, z′) is a
sesquilinear scalar-valued form with an associated Hermitian matrix. Let vλ1 , . . . , vλn
be an orthonormal basis for Cn with

φλ(vλj , vλk ) = δjkµj (λ)

where µj (λ) = µλ
j are the eigenvalues of the matrix associated with φλ.
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2.2 Lie Group Structure

After projecting M ⊂ Cn ×Cm onto G = Cn ×Rm, the Lie group structure of M is
isomorphic to the following group structure on G:

gg′ = (z, t)(z′, t ′) = (z + z′, t + t ′ + 2 Imφ(z, z′)).

Note that (0,0) is the identity in this group structure and that the inverse of (z, t) is
(−z,−t).

The right invariant vector fields are given as follows: let g ∈G; if X is a vector
field, then we denote its value at g by X(g), an element of the tangent space of M at
g. Define Rg : G &→G by Rg(g

′) = g′g; then the right invariant vector fields, X(g),
are obtained by pushing forward the vectors in the tangent space at the origin via the
differential of the map Rg . In particular, a vector field X is right invariant if and only
if X(g) = (Rg)∗{X(0)}, where (Rg)∗ denotes the push forward operator. Let v be a
vector in Cn ≈R2n which can be identified with the tangent space of M at the origin.
Let ∂v be the real vector field given by the directional derivative in the direction of v.
Then the right invariant vector field at an arbitrary g = (z,w) ∈M corresponding to
v is given by

Xv(g) = ∂v + 2 Imφ(v, z) · Dt = ∂v − 2 Imφ(z, v) · Dt

where Dt = (∂t1 , . . . , ∂tm), (see Sect. 1 in Peloso/Ricci [13]). Let Jv be the vector in
R2n which corresponds to iv in Cn (where i =

√
−1). The CR structure on G is then

spanned by vectors of the form:

Zv(g) = (1/2)(Xv − iXJv) = (1/2)(∂v − i∂Jv)− iφ(z, v) · Dt

and

Zv(g) = (1/2)(Xv + iXJv) = (1/2)(∂v + i∂Jv) + iφ(z, v) · Dt .

Also,

[Xv,Xv′ ] = 4 Imφ(v′, v) · Dt, [Zv,Zv′] = 0

and

[Zv,Zv′ ] = 0, [Zv,Zv′ ] = 2iφ(v, v′) · Dt .

We often drop the g in the vector field notation. The vector field definition of the Levi
form of M is the map v &→ proj([Zv,Zv]), where proj stands for the projection onto
the totally real part of the tangent space of M at the origin (i.e., the t-axes). From the
above equation, the Levi form of M can be identified with the map v &→ φ(v, v), as
mentioned at the beginning of this section.

Recall that for any λ ∈ Rm, the set of vectors vλ1 , . . . , vλn is an orthonormal basis
which diagonalizes φλ(z, z) = φ(z, z) · λ. For λ ∈Rm, define the function ν(λ) by

ν(λ) = rank(φλ).
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The function ν(λ) satisfies 0≤ ν(λ)≤ n and, as in [13],

{λ ∈Rm : ν(λ)≡ max
λ̃∈Rm

ν(λ̃)}

is a Zariski-open set '⊂Rm that carries full measure, i.e., |Rm \'| = 0. We identify
x with (xλ

1 , . . . , xλ
n) and y with (yλ

1 , . . . , yλ
n) We also write z = ∑n

j=1(x
λ
j + iyλ

j )vλj
for z = x + iy ∈ Cn. Additionally, we let z′ = (zλ1, . . . , zλν(λ)), z′′ = (zλν(λ)+1, . . . , z

λ
n)

and similarly for x and y.
Since the right invariant vector fields corresponding to φ are equal to the left in-

variant vector fields corresponding to −φ and M−φ is biholomorphic to Mφ , any
analysis involving right invariant vector fields yields corresponding information about
the left invariant vector fields and vice versa.

2.3 !b Calculations

Let v1, . . . , vn be any orthonormal basis for Cn. Let Xj = Xvj , Yj = XJvj , and let
Zj = (1/2)(Xj − iYj ), Zj = (1/2)(Xj + iYj ) be the right invariant vector fields
defined above (which are also the left invariant vector fields for the group struc-
ture with φ replaced by −φ). Also let dzj and dzj be the dual basis. A (0, q)-form
can be expressed as

∑
K∈Iq

φK dzK where Iq = {K = (k1, . . . , kq) : 1 ≤ k1 < · · ·
< kq ≤ n}. Proposition 2.1 in [13] states that

!b

( ∑

K∈Iq

φK dzK

)
=

∑

K,L∈Iq

!LKφK dzL

where

!LK =−δLK L + MLK (1)

with the sub-Laplacian on G

L = (1/2)

n∑

k=1

(ZkZk + ZkZk)

and

MLK =






1
2

(∑
k∈K [Zk,Zk]−

∑
k -∈K [Zk,Zk]

)
if K = L,

ε(K,L)[Zk,Zl] if |K ∩L| = q − 1,

0 otherwise.

Here, ε(K,L) is (−1)d where d is the number of elements in K ∩ L between the
unique element k ∈ K − L and the unique element l ∈ L−K . The above theorem
is stated and proved in [13] for the left invariant vector fields. If right invariant vec-
tor fields are used, then the above theorem provides a formula for !b associated
with M−φ .
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For later, we record the diagonal part of !b , i.e., !LL. Using (1) with L = K and
the above formulas for Zk , we obtain

!LL = −1
4
)+ 2 Im

{
n∑

k=1

φ(z, vk)∂zk

}

· Dt −
n∑

k=1

(
φ(z, vk) · Dt

)(
φ(z, vk) · Dt

)

+ i

(∑

k∈L

φ(vk, vk) · Dt −
∑

k -∈L

φ(vk, vk) · Dt

)
(2)

where ) is the usual Laplacian in the z-coordinates. For example, in the classic case
of the Heisenberg group, φ(z, z) = |z|2, Zk = ∂zk − izk∂t , and !b is a diagonal op-
erator (since [Zk,Zl] = 0 when k -= l). The above formula for !LL then gives the
coefficient of !b acting on forms of the type φL(z)dzL.

2.4 The !b-Heat Equation and the Fourier Transform

The heat equation defined on (0, q)-forms on M is the initial value problem on s ∈
(0,∞) and (z, t) ∈M given by

{
∂ρ
∂s + !bρ = 0 in (0,∞)×M,

ρ(s = 0, z, t) = δ0(z, t) on {s = 0}×M.

Here, s is the time variable and t ∈Rm is a spatial variable. Although we cannot find
a closed form for ρ(s, z, t), we can find the partial Fourier transform of ρ(s, z, t) in
the t-variables.

Given a variable t̃ ∈R, the (partial) Fourier transform in t̃ is given by

f̂ (τ ) = 1√
2π

∫

R
e−it̃τf (t̃) dt̃ .

If f is a function of several variables f (t̃1, . . . , t̃k) and, for example, we take the
partial Fourier transform in t1, we use the notation f (̂τ , t̃2, . . . , t̃k).

As we will see below, to compute the partial Fourier transform of ρ(s, z, t) =
ρs(z, t), it is enough to solve the (Fourier transform of the) !LL-heat equation

{
∂ρ
∂s + !LLρ = 0 in (0,∞)×M,

ρs=0(z, t) = δ0(z, t) on {s = 0}×M.
(3)

We start by computing the partial Fourier transform in t of !LL, denoted !λ
LL.

We start with a reexamination of (2). By taking the partial Fourier transform in t of
the formula for !LL, the effect is to replace Dt with iλ. If we write z = ∑n

k=1 zkvk ,
then

Im

{
n∑

k=1

φ(z, vk)∂zk

}

· iλ =
n∑

k=1

φ(vk, vk) · iλ Im{zk∂zk } =
n∑

k=1

iµλ
k Im{zk∂zk }
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and

n∑

k=1

(
φ(z, vk) · iλ

)(
φ(z, vk) · iλ

)
=

n∑

k=1

(
zkφ(vk, vk) · iλ

)(
zkφ(vk, vk) · iλ

)

= −
n∑

k=1

(µλ
k )

2|zk|2.

Consequently, (2) transforms to

!λ
LL =−1

4
)+ 2i

n∑

k=1

µλ
k Im{zk∂zk } +

n∑

k=1

(µλ
k )

2|zk|2 −
(∑

k∈L

µλ
k −

∑

k -∈L

µλ
k

)
. (4)

We employ the following notation: for 1 ≤ j ≤ ν(λ), define ελj (L) = ελj =
sgn(µλ

j ), if j ∈ L and ελj =−sgn(µλ
j ) if j -∈L.

Our main result is the following.

Theorem 1 For any λ ∈ Rm, the partial Fourier transform of the fundamental solu-
tion to the !LL-heat equation satisfies the heat equation

{
∂ρ
∂s + !λ

LLρ = 0 in (0,∞)×Cn,

ρ(s = 0, z, λ̂) = (2π)−m/2δ0(z) on {s = 0}×Cn

and is given by

ρ(s, x, y, λ̂) = 2n−ν(λ)(2π)−(m/2+n)

sn−ν(λ)
e−

|x′′|2+|y′′|2
s

×
ν(λ)∏

j=1

2e
sελj |µλ

j |
µλ

j

sinh(sµλ
j )

e
−µλ

j coth(µλ
j s)(x2

j +y2
j )

.

Note that µλ
j and coth(sµλ

j ) are real-valued and are odd in µλ
j , so putting absolute

values around the µλ
j would not change the result. Therefore, there is Gaussian decay

in (x2
j + y2

j ) for all j when λ ∈ Rm. Theorem 1 generalizes the case of Theorem 1.2
in [4] where (in the notation given there) τ ∈R and γ = n− 2q .

We now cast the heat equation in terms of a weighted ∂-problem in Cn. Recall
that Zj = ∂

∂zj
+ iφ(z, v) · Dt . If we denote a superscript λ for the partial Fourier

transform in t , then

Zj &→Z
λ
j = ∂

∂zj
− φ(z, vj ) · λ = eφ(z,z)·λ ∂

∂zj
e−φ(z,z)·λ.
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From the computation of Zj , the tangential Cauchy-Riemann operator ∂b is defined
on (0, q)-forms on G by

∂bf (z) =
∑

K∈Iq+1
J∈Iq

n∑

j=1

ε
jJ
K ZjfJ (z) dzK

where

ε
jJ
K =






(−1)σ if {j}∪ J = K as sets and σ is the sign of
the permutation taking {j}∪ J to K,

0 otherwise.

This means that if g is a (0, q)-form in Cn and we treat λ as a parameter, then the
partial Fourier transform in t of ∂b , denoted by ∂

λ
b is given by

∂
λ
bg(z) = eφ(z,z)·λ∂{e−φ(z,z)·λg}

where ∂ is the usual Cauchy-Riemann operator on Cn. Since !b = ∂b∂
∗
b + ∂

∗
b∂b

where ∂
∗
b is the L2-adjoint of ∂b , it follows that !λ

b = ∂
λ
b(∂

λ
b)
∗ + (∂

λ
b)
∗∂λb . Thus,

solving for the !λ
b-heat kernel also yields the heat kernel associated with the weighted

∂-problem on Cn with the weight e−φ(z,z)·λ.

Corollary 1 For any λ ∈Rm, the function

H λ(s, z, z̃) = (2π)m/2ρs(z− z̃, λ̂)e−2iλ·Imφ(z,z̃)

satisfies the following: if

H λ{f }(s, z) =
∫

Cn
H λ(s, z, z̃)f (z̃) dz̃,

then H λ{f } solves the initial value problem for the weighted heat equation:
{

(∂s + !λ
b)H

λ{f } = 0 in (0,∞)×Cn,

H λ{f }(s = 0, z) = f (z) on {s = 0}×Cn.

In particular, the component of H λ(s, z, z̃) on dzL for L ∈ Iq is

H λ
L(s, z, z̃) = 2n−ν(λ)(2π)−n

sn−ν(λ)
e−

|z′′−z̃′′|2
s

×
ν(λ)∏

j=1

2e
sελj |µλ

j |
µλ

j

sinh(sµλ
j )

e
−µλ

j coth(µλ
j s)|zj−z̃j |2

e−2iλ·Imφ(z,z̃).

Note that the formula for the heat kernel yields a standard Gaussian solution for
the Euclidean heat kernel in the zero eigenvalue directions. Also, the disappearance
of the (2π)−m/2 owes to the fact that δ0(z, λ̂) = (2π)−m/2δ0(z).
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3 Representation Theory

3.1 Irreducible Unitary Representations

For z = x + iy ∈ Cn, t,λ ∈ Rm, and η ∈ Cn−ν(λ), define πλ,η(x, y, t) : L2(Rν(λ)) &→
L2(Rν(λ)) by

πλ,η(x, y, t)(h)(ξ) = ei(λ·t+2 Re(z′′·η))e
−2i

∑ν(λ)
j=1 µλ

j yλ
j (ξj +xλ

j )
h(ξ + 2x′)

for h ∈ L2(Rν(λ)) (so ξ ∈ Rν(λ)). Note that if η = ζ + iς , then Re(z′′ · η) = x′′ · ζ +
y′′ · ς .

The map πλ,η(x, y, t) is unitary on L2(Rν(λ)). Also, π is a representation for G,
which means that for each λ ∈ ', πλ,η is a group homomorphism from G to the
group of unitary operators on L2(Rν(λ)). Verifying that πλ,η is a representation and
that all irreducible representations (up to equivalence) are of the form πλ,η is done
in [13]. The formula for πλ,η is motivated by the Stone–von Neumann Theorem and
its corollaries. On the Heisenberg group, it is explicitly worked out in [7].

If X is a right invariant vector field, then X gets “transformed” via πλ,η to an
operator on L2(Rν(λ)) denoted by T = dπλ,η(X). This means that

X{πλ,η(g)} = T ◦ πλ,η(g) (5)

as operators on L2(Rν(λ)). It is usually easy to identify T by seeing what happens at
g = 0 and using the right invariance of X to show that the above equation holds for
all g ∈G. To clarify, let Rg(g

′) = g′g and recall that the vector field X at the point g

is given by X(g) = (Rg)∗{X(0)}. If X{πλ,η}(0) = T ◦ πλ,η(0), then we have

X{πλ,η}(g) = (Rg)∗{X(0)}{πλ,η(g)}
= X(g′ = 0){πλ,η(Rg(g

′))}
= X(g′ = 0){πλ,η(g

′)πλ,η(g)} since π is a homomorphism

= {X(g′ = 0)πλ,η(g
′)} ◦ πλ,η(g)

= T ◦ πλ,η(g)

where the last equation uses the relationship of X(g) and π at g = 0.
A similar computation shows that if X2 is left invariant, then

X2{πλ,η}(g) = πλ,η(g) ◦ T

as operators on L2(Rν(λ)). Note that the order of T and πλ,η is reversed from (5).
We will not dwell on this point as we prefer the use of right invariant vector fields.
The relationship X{πλ,η}(g) = T ◦ πλ,η(g) is often expressed using the shorthand:
dπλ,η(X) = T .

From earlier, we have the right invariant vector fields

Xj = ∂vλj
− 2 Imφ(z, vλj ) · Dt
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and

Yj = ∂Jvλj
− 2 Imφ(z, ivλj ) · Dt = ∂Jvλj

+ 2 Reφ(z, vλj ) · Dt .

where J is the usual complex structure map on R2n = Cn. In view of (5), we have
the following relations: for

Xj {πλ,η}(g) =
{

2∂ξj ◦ πλ,η(g), 1≤ j ≤ ν(λ),

2iζj ◦ πλ,η(g), ν(λ) + 1≤ j ≤ n,
(6)

Yj {πλ,η}(g) =
{
−2iµλ

j ξj ◦ πλ,η(g), 1≤ j ≤ ν(λ),

2iςj ◦ πλ,η(g), ν(λ) + 1≤ j ≤ n,
(7)

∂tk {πλ,η}(g) = iλk ◦ πλ,η(g), 1≤ k ≤m (8)

as operators on L2(Rν(λ)). In the second equation, ξj is thought of as a multiplication
operator on L2(Rν(λ)), i.e., f (ξ) &→ f (ξ)ξj . Equations (6) and (7) are easily shown
to hold at the origin since Xj(0) = ∂xj and Yj (0) = ∂yj , and the right invariance
forces these equations to hold at all g ∈G.

Now we compute the “transform” of !LK in the coordinates (zλ1, . . . , zλn). Note
that

dπλ,η[Zj ,Z2] =
{
−2µλ

j if j = 2,

0 if j -= 2.

This follows from (8) and the fact that the coordinates (zλ1, . . . , zλn) were chosen to
diagonalize the form φ(z, z̃) · λ. In view of (1) and (6)–(8), we have

dπλ,η!LK =
{
−)ξ + |η|2 + ∑ν(λ)

j=1(µ
λ
j )

2ξ2
j −

∑ν(λ)
j=1 ε

λ
j |µλ

j | if K = L,

0 if K -= L.
(9)

We will also need to transform the adjoint of !LK which is defined as
∫

(z,t)∈G
!LK {f (z, t)}g(z, t) dx dy dt =

∫

(z,t)∈G
f (z, t)!adj

LK {g(z, t)}dx dy dt

(note: this is the “integration by parts” adjoint, not the L2 adjoint, since there is no
conjugation). We have

Q
λ,η,LK
ξ := dπλ,η!adj

LK

=
{
−)ξ + |η|2 + ∑ν(λ)

j=1(µ
λ
j )

2ξ2
j + ∑ν(λ)

j=1 ε
λ
j |µλ

j | if K = L,

0 if K -= L
(10)

(just a sign change for the last term on the right). The subscript ξ on Q
λ,η,LK
ξ indicates

that this is a differential operator in the ξ variable (instead of the group variable
g = (x, y, t)). Below, we assume L = K (otherwise the operator is zero) and that L,
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λ, and η are fixed. We drop the superscript LL when its use is unambiguous. In view
of (1) and (6)–(8), we have

!adj
LL{πλ,η(g)} = Q

λ,η
ξ ◦ πλ,η(g) (11)

as operators on L2(Rν(λ)). We return to this key equation later.

3.2 Group Fourier Transform

For (z, t) ∈G, we express (z, t) = (x, y, t) = (x′, y′, x′′, y′′, t) = (x′, y′, z′′, t). The
variable z′′ may be thought of as in Cn−ν(λ) or R2(n−ν(λ)).

For f : G &→C, we define the group Fourier transform of f as the operator T
λ,η
f :

L2(Rν(λ)) &→ L2(Rν(λ)) where for h ∈ L2(Rν(λ)),

T
λ,η
f {h}(ξ) =

∫

(z=x+iy,t)∈G
f (z, t)πλ,η(z, t)(h)(ξ) dx dy dt

=
∫

(z=x+iy,t)∈G
f (z, t)ei(λ·t+2 Re(z′′·η))e

−2i
∑ν(λ)

j=1 µλ
j yλ

j (ξj +xλ
j )

× h(ξ + 2x′) dx dy dt.

As before, xj , yj are the coordinates for x, y ∈ Rn relative to the basis vλ1 , . . . , vλn .
Note that

T
λ,η
f {h}(ξ) = (2π)(2n+m−ν(λ))/2

×
∫

x′∈Rν(λ)
f (x′,2 ̂µλ ◦ (ξ + x′), −̂2η, −̂λ)h(ξ + 2x′) dx′.

We have written µλ ◦ (ξ + x′) for (µλ
1(ξ1 + xλ

1 ), . . . ,µλ
ν(λ)(ξν(λ) + xλ

ν(λ))). We can

also express T
λ,η
f {h} as

T
λ,η
f {h}(ξ)

= (2π)(2n+m−ν(λ))/2

×
∫

x′∈Rν(λ)
Fx′′,y,t {f (x, y, t)e

−2i
∑ν(λ)

j=1 µλ
j xj yj }(x′,2µλ ◦ ξ,−2η,−λ)h(ξ + 2x′) dx′.

(12)

In the above notation, Fx′′,y,t indicates the Fourier transform in the (x′′, y, t) vari-
ables only, whereas F indicates the Fourier transform in all variables (except s).

In view of (11), we have

Q
λ,η
ξ {T λ,η

f (h)(ξ)} =
∫

(z=x+iy,t)∈G
f (z, t)!adj

LL{πλ,η(z, t)h(ξ)}dx dy dt

=
∫

(z=x+iy,t)∈G
!LL{f (z, t)}πλ,η(z, t)h(ξ) dx dy dt. (13)
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4 The Heat Equation

4.1 The Heat Equation on M

Our goal is to find a formula for the fundamental solution to the heat equation (3).
We know abstractly that ρ exists: !LL is self-adjoint and nonnegative, so e−s!LL is
a well-defined, bounded linear operator on L2(G) with norm at most 1. It has an inte-
gral kernel by the Schwartz kernel theorem. For the computations performed here, it
suffices to assume that the ρ is smooth and in L2 because an a posteriori computation
verifies that ρ is the unique fundamental solution to the !LL-heat equation.

Let us apply the group Fourier transform to ρ and recall that ρs(z, t) = ρ(s, z, t).
Define the operator Uλ,η(s) : L2(Rν(λ)) &→ L2(Rν(λ)) by

Uλ,η(s){h}(ξ) = T λ,η
ρs

{h}(ξ) =
∫

(z,t)∈G
ρs(z, t)πλ,η(z, t)h(ξ) dz dt. (14)

In view of (13) and the fact that ρs(z, t) solves the heat equation, we have

Q
λ,η
ξ {Uλ,η(s){h}(ξ)} =

∫

(z,t)∈G
!LL{ρs(z, t)}πλ,η(z, t)h(ξ) dz dt

= −∂s

{∫

(z,t)∈G
ρs(z, t)πλ,η(z, t)h(ξ) dz dt

}

= −∂s

{
Uλ,η(s){h}(ξ)

}

Also

Uλ,η(s = 0){h}(ξ) = T
λ,η
δ0

{h}(ξ) = h(ξ).

Therefore, we conclude that Uλ,η(s) satisfies the following boundary value problem:

Q
λ,η
ξ {Uλ(s)} =−∂s{Uλ(s)} and Uλ(s = 0) = Id (15)

where Id is the identity operator on L2(Rν(λ)). This is a Hermite equation similar to,
though more complicated than, the one we solved in the Heisenberg group case [4].
So, our approach is to proceed as follows: 1) explicitly solve this Hermite equation,
and then 2) recover the fundamental solution to the heat equation.

As to the second task, we let a ∈ Rν(λ) be an arbitrary vector, and then define
ha(ξ) = (2π)−n−m/2e−iξ ·a . Let

uλ,η(s, a, ξ) = Uλ,η(s){ha}(ξ).

The above definition needs explanation since ha -∈ L2(Rν(λ)). For each fixed s > 0,
ρs ∈ L2(G) and we can approximate ρs by ρδ

s ∈ L1 ∩ L2(G) (e.g., by multiply-
ing ρs with an appropriate test function). Then, as we see below, we can define
U

λ,η
δ (s){ha}(ξ) = T

λ,η

ρδ
s

{ha}(ξ) since in view of (12),
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U
λ,η
δ (s){ha}(ξ)

= 1
(2π)ν(λ)/2

×
∫

x′∈Rν(λ)
Fx′′,y,t

{
ρδ

s (x, y, t)e
−2i

∑ν(λ)
j=1 µλ

j yj xj
}
(x′,2µλ ◦ ξ,−2η,−λ)e−i(ξ+2x′)·a dx′

= F
{
ρδ

s (x, y, t)e
−2i

∑ν(λ)
j=1 µλ

j yj xj
}
(2a,2µλ ◦ ξ,−2η,−λ)e−iξ ·a.

By the definition of the Fourier transform in L2,

F
{
ρδ

s (x, y, t)e
−2i

∑ν(λ)
j=1 µλ

j yj xj
}
(2a,2µλ ◦ ξ,−2η,−λ)e−iξ ·a

−→ F
{
ρs(x, y, t)e

−2i
∑ν(λ)

j=1 µλ
j yj xj

}
(2a,2µλ ◦ ξ,−2η,−λ)e−iξ ·a

in L2(Rν(λ)) as δ→ 0. Thus, uλ,η(s, a, ξ) is well-defined. In the above computation,
we view η = (ζ,ς) ∈R2(n−ν(λ)). Also, the motivation for the choice of h = ha is that
it offers the “missing” exponential needed to relate the full Fourier transform of ρs

with uλ,η . Now it is just a matter of unraveling the equation

uλ,η(s, a, ξ) = F
{
ρs(x, y, t)e

−2i
∑ν(λ)

j=1 µλ
j yλ

j xλ
j
}
(2a,2µλ ◦ ξ,−2η,−λ)e−iξ ·a (16)

for ρs using the inverse Fourier transform.
Before we go on, let us remark that had we used left invariant vector fields rather

than right invariant ones, then the transformed operator, Q
λ,η
ξ would appear on the

right of the group transform. That is to say, we would be trying to solve the following
analogue of (15)

∂s{T λ
ρs

} =−T λ
ρs

Q̃
λ,η
ξ and T λ

ρs=0
= Id

where Q̃
λ,η
ξ is a Hermite type differential operator similar to Q

λ,η
ξ . Note the transform

operator T λ is now intertwined with the differential operators (i.e., ∂s is on the left
side and Q̃

λ,η
ξ is on the right). Since the inversion formula for the group transform

operator is complicated (see [13]), it would appear that using left invariant vector
fields makes it more difficult to unravel a formula for ρ.

4.2 Weighted Heat Equation

Our objective is to compute ρs(x
′, y′, η̂, λ̂) by solving the weighted heat equation

obtained by taking the partial Fourier transform in the t and (x′′, y′′)-variables. We
obtain the !λ,η

LL -heat equation

{
∂sρs(x

′, y′, η̂, λ̂) =−!λ,η
LLρs(x

′, y′, η̂, λ̂),

ρs=0(x
′, y′, η̂, λ̂) = (2π)−m/2−(n−ν(λ))δ0(x

′, y′).
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From (4), we have

!λ,η
LL =−1

4
)+ 1

4
|η|2 + 2i

ν(λ)∑

j=1

µλ
j Im{zj∂zj } +

ν(λ)∑

j=1

|zjµ
λ
j |2 −

ν(λ)∑

j=1

ελj |µλ
j |.

In the following computation, we find a formula of ρs(x
′, y′, η̂, λ̂). Observe that

µ−λj = −µλ
j and ε−λj = −ελj . (Note that v−λj = vλj , so we can continue to suppress

the λ superscript on xj and yj .) We unravel (16) to obtain (with a, b ∈Rν(λ))

ρs(x
′, y′, η̂, λ̂) = e

−2i
∑ν(λ)

j=1 µλ
j xj yj F−1

a,b

(
e
− i

4
∑ν(λ)

j=1 aj bj /µλ
j ũλ,η(s, a, b)

)
(x′, y′) (17)

where ũλ,η(s, a, b) = u−λ,− 1
2 η(s, a/2, b/(2µ−λ)) and b/(2µ−λ) is the vector quan-

tity whose j th component is bj /(2µ−λj ). As we shall see, the inverse Fourier trans-
form in the a and b variables will be relatively simple (using Gaussian integrals). In
the next section, we use Hermite functions to solve for ũλ,η on the “transform” side.
Then we return to the above formula to compute ρs(x

′, y′, η̂, λ̂).

5 Computing the Heat Kernels

In this section, we prove Theorem 1 and Corollary 1.

5.1 Hermite Functions

Our starting point is (15), which we restate as Q
λ,η
ξ {Uλ,η(s)} =−∂s{Uλ,η(s)} where

Q
λ,η
ξ =−)ξ + |η|2 +

ν(λ)∑

j=1

(µλ
j ξj )

2 +
ν(λ)∑

j=1

ελj |µλ
j |.

We use Hermite functions to solve this equation. For a nonnegative integer 2, define

ψ2(x) = (−1)2

22/2π1/4(2!)1/2

d2

dx2
{e−x2}ex2/2, x ∈R.

Each ψ2 has unit L2-norm on the real line and satisfies the equation

−ψ ′′2 (x) + x2ψ2(x) = (22+ 1)ψ2(x);

see [19], (1.1.9). For λ ∈Rm \ {0}, define

ψλ
2j

(ξj ) = ψ2j (|µλ
j |1/2ξj )|µλ

j |1/4.

Each ψλ
2j

(ξj ) has unit L2-norm on R and hence ψλ
2 has unit L2-norm on Rν(λ). An

easy calculation shows that

(−∂ξj ξj + (µλ
j ξj )

2){ψλ
2j

(ξj )} = (22j + 1)ψλ
2j

(ξj )|µλ
j |. (18)
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For s > 0, we claim that Uλ,η(s) : L2(Rν(λ)) &→ L2(Rν(λ)) as defined in (14) is
given by

Uλ,η(s) = e−s|η|2
ν(λ)⊗

j=1

∞∑

2j =0

e
−[(22j +1)+ελj ]|µλ

j |s
P λ
2j

where P λ
2j

is the L2 projection of a smooth function of polynomial growth in the

variable ξj onto the space spanned by ψλ
2j

(ξj ), and where
⊗ν(λ)

j=1 is the tensor product

(so that the output of Uλ,η(s) is a function of ξ1, . . . , ξν(λ)). For shorthand, we write

Eλ
2j

(s) = e
−[(22j +1)+ελj ]|µλ

j |s
.

We then have Uλ,η(s) = e−s|η|2 ⊗ν(λ)
j=1

∑∞
2j =0 Eλ

2j
(s)P λ

2j
. Using the product rule, we

compute

∂s{Uλ,η(s)}

=−|η|2Uλ,η(s) + e−s|η|2
ν(λ)∑

j=1

∂s

( ∞∑

2j =0

Eλ
2j

(s)P λ
2j

)
ν(λ)⊗

k=1
k -=j

∞∑

2k=0

Eλ
2k

(s)P λ
2k

=−|η|2Uλ,η(s) + e−s|η|2
ν(λ)∑

j=1

∞∑

2j =0

−[(22j + 1) + ελj ]|µλ
j |

× e
−[(22j +1)+ελj ]|µλ

j |s
P λ
2j

ν(λ)⊗

k=1
k -=j

∞∑

2k=0

Eλ
2k

(s)P λ
2k

=−|η|2Uλ,η(s) + e−s|η|2
ν(λ)∑

j=1

∞∑

2j =0

(
∂ξj ξj − (µλ

j ξj )
2 − ελj |µλ

j |
)

◦ e
−[(22j +1)+ελj ]|µλ

j |s
P λ
2j

ν(λ)⊗

k=1
k -=j

∞∑

2k=0

Eλ
2k

(s)P λ
2k

where the last equality uses (18). Since the differential operator on the right is inde-
pendent of 2j , we can factor it to the left of

∑
2j

to obtain

∂s{Uλ,η(s)} =−Q
λ,η
ξ {Uλ,η(s)}.

Since the Hermite functions, ψλ
2 , form an orthonormal basis for L2(R), Uλ,η(s = 0)

is just the identity operator. Thus Uλ,η(s) solves (15).
As above, we apply Uλ,η(s) to the function ha(ξ) = (2π)−n−m/2e−iξ ·a to obtain

the fundamental solution ρs . We therefore obtain
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uλ,η(s, a, ξ) = Uλ,η(s){ha(ξ)}

= (2π)−n−m/2e−s|η|2
ν(λ)∏

j=1

∞∑

2j =0

Eλ
2j

(s)P λ
2j

{e−iξj aj }.

Since ha belongs to L∞(Rν(λ)) and not in L2(Rν(λ)), the above sum converges a
priori in the sense of tempered distributions (as opposed to L2 convergence). Earlier,
we argued that we can obtain Uλ,η(s){ha} via a standard approximation argument,
however, we will see below that the convergence is much stronger and the result is a
smooth function in s, a, ξ . Each projection term on the right is

P λ
2j

(e−iξj aj ) =
(∫

ξ̃j∈R
e−iξ̃j ajψ2j (|µλ

j |1/2ξ̃j )|µλ
j |1/4 d ξ̃j

)
|µλ

j |1/4ψ2j (|µλ
j |1/2ξj )

= (2π)1/2ψ̂2j (aj /|µλ
j |1/2)ψ2j (|µλ

j |1/2ξj )

= (2π)1/2(−i)2jψ2j (aj /|µλ
j |1/2)ψ2j (|µλ

j |1/2ξj )

where the last equality uses a standard fact about Hermite functions that they equal
their Fourier transforms up to a factor of (−i)2j . Substituting this expression on the
right into the definition of uλ,η(s, a, ξ), we obtain

uλ,η(s, a, ξ) = (2π)−n−m/2+ν(λ)/2e−s|η|2

×
ν(λ)∏

j=1

∞∑

2j =0

Eλ
2j

(s)(−i)2j ψ2j (aj /|µλ
j |1/2)ψ2j (|µλ

j |1/2ξj ).

This function satisfies

∂su
λ,η(s, a, ξ) =−Q

λ,η
ξ {uλ,η(s, a, ξ)},

uλ,η(s = 0, a, ξ) = ha(ξ) = (2π)−n−m/2e−ia·ξ .

In view of (17), for computing ρs(x
′, y′, η̂, λ̂), we need to compute

ũλ,η(s, a, b) = u−λ,− 1
2 η(s, a/2, b/(2µ−λ))

where b/(2µ−λ) is the vector quantity whose j th component is bj /(2µ−λj ). From the

previous equality, and using that µ−λj =−µλ
j , ε−λj =−ελj , we have

ũλ,η(s, a, b) = (2π)−
1
2 (n+m+(n−ν(λ)))e−s |η|2

4

ν(λ)∏

j=1

e
−(1−ελj )|µλ

j |s

×
∞∑

2j =0

(−i)2j ψ2j (aj /2|µλ
j |1/2)ψ2j (bj |µλ

j |1/2/2µ−λj )e
−22j |µλ

j |s
.
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Let

Sj = e
−2|µλ

j |s
, αj = aj

2|µλ
j |1/2

, βj =
−bj |µλ

j |1/2

2µλ
j

. (19)

Then

ũλ,η(s, a, b) = (2π)−
1
2 (n+m+(n−ν(λ)))e−s |η|2

4

ν(λ)∏

j=1

S
(1−ελj )/2
j

∞∑

2=0

(−iSj )
2ψ2(αj )ψ2(βj ).

Using Mehler’s formula ([19], Lemma 1.1.1) for Hermite functions, we obtain

ũλ,η(s, a, b) = (2π)−(m/2+n)2ν(λ)/2e−s |η|2
4

ν(λ)∏

j=1

S
(1−ελj )/2
j

× 1
√

1 + S2
j

e
− 1

2 (
1−S2

j

1+S2
j

)(α2
j +β2

j )− 2iSj αj βj

1+S2
j .

The series for ũλ,η converges in C∞ on the unit disk in C, and therefore the series
for ũλ,η converges in C∞ for s > 0, justifying many previous computations (which
held a priori in the category of tempered distributions).

5.2 Finishing the Proof of Theorem 1

In view of (17), to determine ρs(x
′, y′, η̂, λ̂), we must compute

F−1
a,b

(
e
−i

∑ν(λ)
j=1 aj bj /(4µλ

j )
ũλ,η(s, a, b)

)
(x′, y′).

Using (19) and simplifying, we obtain

e
−i

∑ν(λ)
j=1 aj bj /(4µλ

j )
ũλ,η(s, a, b)

= (2π)−(m/2+n)e−s |η|2
4

ν(λ)∏

j=1

e
ελj |µλ

j |s
√

cosh(2|µλ
j |s)

e
−Aj (a2

j +b2
j )/2−iBj aj bj

where

Aj =
tanh(2|µλ

j |s)
4|µλ

j |
, Bj =

sinh2(|µλ
j |s)

2µλ
j cosh(2|µλ

j |s)
.

After an exercise in computing Gaussian integrals, we obtain
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F−1
a,b

{
e
−i

∑ν(λ)
j=1 aj bj /(4µλ

j )
ũλ,η(s, a, b)

}
(x′, y′)

= (2π)−(m/2+n)e−s |η|2
4

ν(λ)∏

j=1

e
ελj |µλ

j |s
√

cosh(2|µλ
j |s)

e

−Aj

2(A2
j
+B2

j
)
(x2

j +y2
j )+i

Bj xj yj

A2
j
+B2

j

√
A2

j + B2
j

.

After simplifying,

−Aj

2(A2
j + B2

j )
=−µλ

jAj/Bj ,
Bj

A2
j + B2

j

= 2µλ
j ,

√
cosh(2|µλ

j |s)
√

A2
j + B2

j =
sinh(s|µλ

j |)
2|µλ

j |
.

The previous expression becomes

F−1
a,b

(
e
−i

∑ν(λ)
j=1 aj bj /(4µλ

j )
ũλ,η(s, a, b)

)
(x′, y′)

= (2π)−(m/2+n)e−s |η|2
4

ν(λ)∏

j=1

2e
ελj |µλ

j |s |µλ
j |

sinh(s|µλ
j |)

e
−µλ

j (Aj /Bj )(x2
j +y2

j )+2iµλ
j xj yj .

In view of (17), the fundamental solution ρs(x
′, y′, η̂, λ̂) to the weighted heat equa-

tion is obtained by multiplying this expression by
∏ν(λ)

j=1 e
−2iµλ

j xj yj which cancels the
similar expression on the right side. We therefore obtain

ρs(x
′, y′, η̂, λ̂) = (2π)−(m/2+n)e−s |η|2

4

ν(λ)∏

j=1

2e
ελj |µλ

j |s |µλ
j |

sinh(s|µλ
j |)

e
−µλ

j (Aj /Bj )(x2
j +y2

j )
.

Note that the rightmost exponent can be rewritten as

−µλ
j (Aj /Bj )(x

2
j + y2

j ) =−
|µλ

j | sinh(2|µλ
j |s)

2 sinh2(|µλ
j |s)

(x2
j + y2

j ) =−µλ
j coth(µλ

j s)(x
2
j + y2

j ).

Consequently,

ρs(x, y, λ̂) = 2n−ν(λ)(2π)−(m/2+n)

sn−ν(λ)
e−

|x′′|2+|y′′|2
s

×
ν(λ)∏

j=1

2e
ελj |µλ

j |s |µλ
j |

sinh(s|µλ
j |)

e
−µλ

j coth(µλ
j s)(x2

j +y2
j )

.

This completes the proof of Theorem 1 for λ ∈'.



The !b-Heat Equation on Quadric Manifolds 273

5.3 The Proof of Corollary 1

In this subsection and the next, we show that the following kernel:

H λ(s, z, z̃) = (2π)m/2ρs(z− z̃, λ̂)e−2iλ·Imφ(z,z̃)

= 2n−ν(λ)(2π)−n

sn−ν(λ)

× e−
|z′′−z̃′′|2

s

ν(λ)∏

j=1

2e
ελj |µλ

j |s |µλ
j |

sinh(s|µλ
j |)

e
−µλ

j coth(µλ
j s)|zj−z̃j |2

e−2iλ·Imφ(z,z̃) (20)

is the heat kernel for the weighted ∂-operator in Cn. Here, z = x + iy and z̃ = x̃ + iỹ.
Note that H is conjugate symmetric, i.e., H λ(s, z̃, z) = H λ(s, z, z̃). We will show
that the heat kernel has the following properties: if f ∈ L2(Cn), then

H λ{f }(s, x, y) =
∫

Rn×Rn
H λ(s, x, y, x̃, ỹ)f (x̃, ỹ) dx̃ dỹ

is the solution to the following boundary value problem for the heat equation:

(∂s + !λ
b){H λf } = 0, H λ{f }(s = 0, x, y) = f (x, y).

5.4 Group Convolution and Twisted Convolution

To motivate the above formula, we consider the fundamental solution to the (full)
unweighted heat equation: ρs(x, y, t). For a function f0 ∈ L2(Cn × Rm), and g =
(z, t) ∈Cn ×Rm, define

H {f0}(s, g) = (ρs ∗ f0)(g) =
∫

g̃
ρs(g[g̃]−1)f0(g̃) dg̃ (21)

where ∗ is the group convolution and g[g̃]−1 is the group multiplication of g by the
inverse of g̃. If X is a right invariant vector field, then

XH {f0}(s, g) =
∫

g̃
(Xρs)(g[g̃]−1)f0(g̃) dg̃.

Since !b is composed of right invariant vector fields and ρs satisfies the !b-heat
equation, we therefore have

(∂s + !b){H(f0)} = 0.

In addition, the following initial condition holds:

H {f0}(s = 0, g) =
∫

g̃
ρs=0(g[g̃]−1)f0(g̃) dg̃ = f0(g)

since ρs=0(z, t) is the Dirac delta function centered at (z, t) = 0.
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Note that H λ{f }(s, x, y) = (2π)m/2H {f }(s, x, y, λ̂), which is the partial Fourier
transform in the t variable of H {f }(s, x, y, t). We will now show the Fourier trans-
form in the t-variable transforms the group convolution to a “twisted convolution”,
which we now define. Suppose F and G are in L2(Cn), and λ ∈Rm. Following Stein
[18], p. 552, we let

(F ∗λ G)(z) =
∫

z̃∈Cn
F (z− z̃)G(z̃)e−2iλ·Imφ(z,z̃) dz̃.

The arguments in [18], p. 552, with 〈z, z̃〉 replaced by 2 Imφ(z, z̃), show the follow-
ing: if F0,G0 ∈ L2(Cn ×Rm), then

(F0 ∗G0)(z, λ̂) = (2π)m/2(F0(·, λ̂) ∗λ G0(·, λ̂))(z).

Now suppose f ∈ L2(Cn) is given and let f0(z, t) = (2π)m/2f (z)δ0(t), so that
f0(z, λ̂) = f (z). With H λ given as in (20), we can take the partial Fourier transform
in t of (21) and use the above relationship to obtain

H λ(f )(s, z) =
∫

z̃∈Cn
H λ(s, z, z̃)f (z̃) dz̃

=
∫

z̃∈Rn,ỹ∈Rn
(2π)m/2ρs(x − x̃, y − ỹ, λ̂)f (x̃, ỹ)e−2iλ·Imφ(z,z̃) dx̃ dỹ

= (2π)m/2(ρs(·, λ̂) ∗λ f0(·, λ̂))(z)

= (ρs ∗ f0)(z, λ̂)

= H(f0)(s, z, λ̂).

Since H(f0) satisfies the !b-heat equation, H(f0)(s, z, λ̂) = H λ(f )(s, z) satisfies
the weighted heat equation, i.e.,

(∂s + !λ
b){H λ(f )} = 0.

The initial condition H λ(f )(s = 0, z) = f (z) is also satisfied because

H λ(f )(s = 0, z) = H(f0)(s = 0, z, λ̂)

= f0(z, λ̂)

= f (z).
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