The \square_{b}-Heat Equation on Quadric Manifolds

Albert Boggess • Andrew Raich

Received: 4 July 2009 / Published online: 8 July 2010
© Mathematica Josephina, Inc. 2010

Abstract

In this article, we give an explicit calculation of the partial Fourier transform of the fundamental solution to the \square_{b}-heat equation on quadric submanifolds $M \subset \mathbb{C}^{n} \times \mathbb{C}^{m}$. As a consequence, we can also compute the heat kernel associated with the weighted $\bar{\partial}$-equation in \mathbb{C}^{n} when the weight is given by $\exp (-\phi(z, z) \cdot \lambda)$ where $\phi: \mathbb{C}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ is a quadratic, sesquilinear form and $\lambda \in \mathbb{R}^{m}$. Our method involves the representation theory of the Lie group M and the group Fourier transform.

Keywords Quadric manifold • Lie group • Heat kernel • Heat equation • Fundamental solution • Kohn Laplacian • Heisenberg group

Mathematics Subject Classification (2000) Primary 32W30 • 33C45 • 43A80 • 35K08

1 Introduction

The purpose of this article is to present an explicit calculation of the Fourier transform of the fundamental solution of the \square_{b}-heat equation on quadric submanifolds $M \subset \mathbb{C}^{n} \times \mathbb{C}^{m}$. A quadric submanifold can be thought of as a generalization of the

Communicated by Steve Bell.

The second author is partially funded by NSF grant DMS-0855822.

A. Boggess (\boxtimes)

Department of Mathematics, Texas A\&M University, Mailstop 3368, College Station, TX 77845-3368, USA
e-mail: boggess@math.tamu.edu
A. Raich

Department of Mathematics, 1 University of Arkansas, SCEN 327, Fayetteville, AR 72701, USA
e-mail: araich@uark.edu

Heisenberg group-it is a Lie group with a known representation theory [13], and the technique of using Hermite functions to compute the heat kernel, as done in [4, 12] and elsewhere, can be extended to work in this situation as well.

A consequence of our fundamental solution computation is that we can explicitly compute the heat kernel associated with the weighted $\bar{\partial}$-problem in \mathbb{C}^{n} when the weight is given by $\exp (-\phi(z, z) \cdot \lambda)$ where $\phi: \mathbb{C}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ is a quadratic, sesquilinear form and $\lambda \in \mathbb{R}^{m}$. This computation partially generalizes the results in [4]. When $m=1$ and the weight is given by $\exp \left(\tau P\left(z_{1}, \ldots, z_{n}\right)\right)$ where $\tau \in \mathbb{R}$, $P\left(z_{1}, \ldots, z_{n}\right)=\sum_{j=1}^{n} p_{j}\left(z_{j}\right)$, and p_{j} are subharmonic, nonharmonic polynomials, Raich [14-17] has estimated the heat kernel associated with the weighted $\bar{\partial}$-problem. If, in addition, $n=1$, the weighted $\bar{\partial}$-problem and explicit construction of Bergman and Szegö kernels have been studied by a number of authors in different contexts, e.g., $[1,6,8-11]$. We also note that quadric manifolds are related to H-type groups on which Yang and Zhu have computed the heat kernel for the sub-Laplacian [20]. Additionally, although there is some overlap with the results by Calin et al. [5], their method is based on Hamilton-Jacobi theory in the spirit of Beals et al. [2, 3] and they only consider the case when ϕ is diagonal.

The remainder of the paper is organized as follows: in Sect. 2, we define our terms and state our main results. Section 3 provides the necessary background from representation theory. In Sects. 4 and 5, we apply the representation theory of M to the heat kernels and prove the main results.

2 Quadric Submanifolds and the \square_{b}-Heat Equation

2.1 Quadric Submanifolds

Let M be the quadric submanifold in $\mathbb{C}^{n} \times \mathbb{C}^{m}$ defined by

$$
M=\left\{(z, w) \in \mathbb{C}^{n} \times \mathbb{C}^{m} ; \operatorname{Im} w=\phi(z, z)\right\}
$$

where $\phi: \mathbb{C}^{n} \times \mathbb{C}^{n} \mapsto \mathbb{C}^{m}$ is a sesquilinear form (i.e., $\left.\phi\left(z, z^{\prime}\right)=\overline{\phi\left(z^{\prime}, z\right)}\right)$. For emphasis, we sometimes write M_{ϕ} to denote the dependence of M on the quadratic function ϕ. Note that $M_{-\phi}$ is biholomorphic to M_{ϕ} by the change of variables $(z, w) \mapsto(z,-w)$.

For $\lambda \in \mathbb{R}^{m}$, let

$$
\phi^{\lambda}\left(z, z^{\prime}\right)=\phi\left(z, z^{\prime}\right) \cdot \lambda
$$

where \cdot is the ordinary dot product (without conjugation). Observe that $\phi^{\lambda}\left(z, z^{\prime}\right)$ is a sesquilinear scalar-valued form with an associated Hermitian matrix. Let $v_{1}^{\lambda}, \ldots, v_{n}^{\lambda}$ be an orthonormal basis for \mathbb{C}^{n} with

$$
\phi^{\lambda}\left(v_{j}^{\lambda}, v_{k}^{\lambda}\right)=\delta_{j k} \mu_{j}(\lambda)
$$

where $\mu_{j}(\lambda)=\mu_{j}^{\lambda}$ are the eigenvalues of the matrix associated with ϕ^{λ}.

2.2 Lie Group Structure

After projecting $M \subset \mathbb{C}^{n} \times \mathbb{C}^{m}$ onto $G=\mathbb{C}^{n} \times \mathbb{R}^{m}$, the Lie group structure of M is isomorphic to the following group structure on G :

$$
g g^{\prime}=(z, t)\left(z^{\prime}, t^{\prime}\right)=\left(z+z^{\prime}, t+t^{\prime}+2 \operatorname{Im} \phi\left(z, z^{\prime}\right)\right) .
$$

Note that $(0,0)$ is the identity in this group structure and that the inverse of (z, t) is $(-z,-t)$.

The right invariant vector fields are given as follows: let $g \in G$; if X is a vector field, then we denote its value at g by $X(g)$, an element of the tangent space of M at g. Define $R_{g}: G \mapsto G$ by $R_{g}\left(g^{\prime}\right)=g^{\prime} g$; then the right invariant vector fields, $X(g)$, are obtained by pushing forward the vectors in the tangent space at the origin via the differential of the map R_{g}. In particular, a vector field X is right invariant if and only if $X(g)=\left(R_{g}\right)_{*}\{X(0)\}$, where $\left(R_{g}\right)_{*}$ denotes the push forward operator. Let v be a vector in $\mathbb{C}^{n} \approx \mathbb{R}^{2 n}$ which can be identified with the tangent space of M at the origin. Let ∂_{v} be the real vector field given by the directional derivative in the direction of v. Then the right invariant vector field at an arbitrary $g=(z, w) \in M$ corresponding to v is given by

$$
X_{v}(g)=\partial_{v}+2 \operatorname{Im} \phi(v, z) \cdot D_{t}=\partial_{v}-2 \operatorname{Im} \phi(z, v) \cdot D_{t}
$$

where $D_{t}=\left(\partial_{t_{1}}, \ldots, \partial_{t_{m}}\right)$, (see Sect. 1 in Peloso/Ricci [13]). Let $J v$ be the vector in $\mathbb{R}^{2 n}$ which corresponds to $i v$ in \mathbb{C}^{n} (where $i=\sqrt{-1}$). The CR structure on G is then spanned by vectors of the form:

$$
Z_{v}(g)=(1 / 2)\left(X_{v}-i X_{J v}\right)=(1 / 2)\left(\partial_{v}-i \partial_{J v}\right)-i \overline{\phi(z, v)} \cdot D_{t}
$$

and

$$
\bar{Z}_{v}(g)=(1 / 2)\left(X_{v}+i X_{J v}\right)=(1 / 2)\left(\partial_{v}+i \partial_{J v}\right)+i \phi(z, v) \cdot D_{t} .
$$

Also,

$$
\left[X_{v}, X_{v^{\prime}}\right]=4 \operatorname{Im} \phi\left(v^{\prime}, v\right) \cdot D_{t}, \quad\left[Z_{v}, Z_{v^{\prime}}\right]=0
$$

and

$$
\left[\bar{Z}_{v}, \bar{Z}_{v^{\prime}}\right]=0, \quad\left[Z_{v}, \bar{Z}_{v^{\prime}}\right]=2 i \phi\left(v, v^{\prime}\right) \cdot D_{t}
$$

We often drop the g in the vector field notation. The vector field definition of the Levi form of M is the map $v \mapsto \operatorname{proj}\left(\left[Z_{v}, \bar{Z}_{v}\right]\right)$, where proj stands for the projection onto the totally real part of the tangent space of M at the origin (i.e., the t-axes). From the above equation, the Levi form of M can be identified with the map $v \mapsto \phi(v, v)$, as mentioned at the beginning of this section.

Recall that for any $\lambda \in \mathbb{R}^{m}$, the set of vectors $v_{1}^{\lambda}, \ldots, v_{n}^{\lambda}$ is an orthonormal basis which diagonalizes $\phi^{\lambda}(z, z)=\phi(z, z) \cdot \lambda$. For $\lambda \in \mathbb{R}^{m}$, define the function $v(\lambda)$ by

$$
v(\lambda)=\operatorname{rank}\left(\phi^{\lambda}\right) .
$$

The function $\nu(\lambda)$ satisfies $0 \leq \nu(\lambda) \leq n$ and, as in [13],

$$
\left\{\lambda \in \mathbb{R}^{m}: v(\lambda) \equiv \max _{\tilde{\lambda} \in \mathbb{R}^{m}} v(\tilde{\lambda})\right\}
$$

is a Zariski-open set $\Omega \subset \mathbb{R}^{m}$ that carries full measure, i.e., $\left|\mathbb{R}^{m} \backslash \Omega\right|=0$. We identify x with $\left(x_{1}^{\lambda}, \ldots, x_{n}^{\lambda}\right)$ and y with $\left(y_{1}^{\lambda}, \ldots, y_{n}^{\lambda}\right)$ We also write $z=\sum_{j=1}^{n}\left(x_{j}^{\lambda}+i y_{j}^{\lambda}\right) v_{j}^{\lambda}$ for $z=x+i y \in \mathbb{C}^{n}$. Additionally, we let $z^{\prime}=\left(z_{1}^{\lambda}, \ldots, z_{v(\lambda)}^{\lambda}\right), z^{\prime \prime}=\left(z_{v(\lambda)+1}^{\lambda}, \ldots, z_{n}^{\lambda}\right)$ and similarly for x and y.

Since the right invariant vector fields corresponding to ϕ are equal to the left invariant vector fields corresponding to $-\phi$ and $M_{-\phi}$ is biholomorphic to M_{ϕ}, any analysis involving right invariant vector fields yields corresponding information about the left invariant vector fields and vice versa.

$2.3 \square_{b}$ Calculations

Let v_{1}, \ldots, v_{n} be any orthonormal basis for \mathbb{C}^{n}. Let $X_{j}=X_{v_{j}}, Y_{j}=X_{J v_{j}}$, and let $Z_{j}=(1 / 2)\left(X_{j}-i Y_{j}\right), \bar{Z}_{j}=(1 / 2)\left(X_{j}+i Y_{j}\right)$ be the right invariant vector fields defined above (which are also the left invariant vector fields for the group structure with ϕ replaced by $-\phi$). Also let $d z_{j}$ and $d \bar{z}_{j}$ be the dual basis. A $(0, q)$-form can be expressed as $\sum_{K \in \mathcal{I}_{q}} \phi_{K} d \bar{z}^{K}$ where $\mathcal{I}_{q}=\left\{K=\left(k_{1}, \ldots, k_{q}\right): 1 \leq k_{1}<\cdots\right.$ $\left.<k_{q} \leq n\right\}$. Proposition 2.1 in [13] states that

$$
\square_{b}\left(\sum_{K \in \mathcal{I}_{q}} \phi_{K} d \bar{z}^{K}\right)=\sum_{K, L \in \mathcal{I}_{q}} \square_{L K} \phi_{K} d \bar{z}^{L}
$$

where

$$
\begin{equation*}
\square_{L K}=-\delta_{L K} \mathcal{L}+M_{L K} \tag{1}
\end{equation*}
$$

with the sub-Laplacian on G

$$
\mathcal{L}=(1 / 2) \sum_{k=1}^{n}\left(\bar{Z}_{k} Z_{k}+Z_{k} \bar{Z}_{k}\right)
$$

and

$$
M_{L K}= \begin{cases}\frac{1}{2}\left(\sum_{k \in K}\left[Z_{k}, \bar{Z}_{k}\right]-\sum_{k \notin K}\left[Z_{k}, \bar{Z}_{k}\right]\right) & \text { if } K=L \\ \epsilon(K, L)\left[Z_{k}, \bar{Z}_{l}\right] & \text { if }|K \cap L|=q-1 \\ 0 & \text { otherwise }\end{cases}
$$

Here, $\epsilon(K, L)$ is $(-1)^{d}$ where d is the number of elements in $K \cap L$ between the unique element $k \in K-L$ and the unique element $l \in L-K$. The above theorem is stated and proved in [13] for the left invariant vector fields. If right invariant vector fields are used, then the above theorem provides a formula for \square_{b} associated with $M_{-\phi}$.

For later, we record the diagonal part of \square_{b}, i.e., $\square_{L L}$. Using (1) with $L=K$ and the above formulas for Z_{k}, we obtain

$$
\begin{align*}
\square_{L L}= & -\frac{1}{4} \Delta+2 \operatorname{Im}\left\{\sum_{k=1}^{n} \phi\left(z, v_{k}\right) \partial_{z_{k}}\right\} \cdot D_{t}-\sum_{k=1}^{n}\left(\phi\left(z, v_{k}\right) \cdot D_{t}\right)\left(\overline{\phi\left(z, v_{k}\right)} \cdot D_{t}\right) \\
& +i\left(\sum_{k \in L} \phi\left(v_{k}, v_{k}\right) \cdot D_{t}-\sum_{k \notin L} \phi\left(v_{k}, v_{k}\right) \cdot D_{t}\right) \tag{2}
\end{align*}
$$

where Δ is the usual Laplacian in the z-coordinates. For example, in the classic case of the Heisenberg group, $\phi(z, z)=|z|^{2}, Z_{k}=\partial_{z_{k}}-i \overline{z_{k}} \partial_{t}$, and \square_{b} is a diagonal operator (since $\left[Z_{k}, \bar{Z}_{l}\right]=0$ when $k \neq l$). The above formula for $\square_{L L}$ then gives the coefficient of \square_{b} acting on forms of the type $\phi_{L}(z) d \bar{z}^{L}$.

2.4 The \square_{b}-Heat Equation and the Fourier Transform

The heat equation defined on $(0, q)$-forms on M is the initial value problem on $s \in$ $(0, \infty)$ and $(z, t) \in M$ given by

$$
\begin{cases}\frac{\partial \rho}{\partial s}+\square_{b} \rho=0 & \text { in }(0, \infty) \times M \\ \rho(s=0, z, t)=\delta_{0}(z, t) & \text { on }\{s=0\} \times M\end{cases}
$$

Here, s is the time variable and $t \in \mathbb{R}^{m}$ is a spatial variable. Although we cannot find a closed form for $\rho(s, z, t)$, we can find the partial Fourier transform of $\rho(s, z, t)$ in the t-variables.

Given a variable $\tilde{t} \in \mathbb{R}$, the (partial) Fourier transform in \tilde{t} is given by

$$
\hat{f}(\tau)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-i \tilde{\tau} \tau} f(\tilde{t}) d \tilde{t}
$$

If f is a function of several variables $f\left(\tilde{t}_{1}, \ldots, \tilde{t}_{k}\right)$ and, for example, we take the partial Fourier transform in t_{1}, we use the notation $f\left(\widehat{\tau}, \tilde{t}_{2}, \ldots, \tilde{t}_{k}\right)$.

As we will see below, to compute the partial Fourier transform of $\rho(s, z, t)=$ $\rho_{s}(z, t)$, it is enough to solve the (Fourier transform of the) $\square_{L L}$-heat equation

$$
\begin{cases}\frac{\partial \rho}{\partial s}+\square_{L L} \rho=0 & \text { in }(0, \infty) \times M \tag{3}\\ \rho_{s=0}(z, t)=\delta_{0}(z, t) & \text { on }\{s=0\} \times M\end{cases}
$$

We start by computing the partial Fourier transform in t of $\square_{L L}$, denoted $\square_{L L}^{\lambda}$. We start with a reexamination of (2). By taking the partial Fourier transform in t of the formula for $\square_{L L}$, the effect is to replace D_{t} with $i \lambda$. If we write $z=\sum_{k=1}^{n} z_{k} v_{k}$, then

$$
\operatorname{Im}\left\{\sum_{k=1}^{n} \phi\left(z, v_{k}\right) \partial_{z_{k}}\right\} \cdot i \lambda=\sum_{k=1}^{n} \phi\left(v_{k}, v_{k}\right) \cdot i \lambda \operatorname{Im}\left\{z_{k} \partial_{z_{k}}\right\}=\sum_{k=1}^{n} i \mu_{k}^{\lambda} \operatorname{Im}\left\{z_{k} \partial_{z_{k}}\right\}
$$

and

$$
\begin{aligned}
\sum_{k=1}^{n}\left(\phi\left(z, v_{k}\right) \cdot i \lambda\right)\left(\overline{\phi\left(z, v_{k}\right)} \cdot i \lambda\right) & =\sum_{k=1}^{n}\left(z_{k} \phi\left(v_{k}, v_{k}\right) \cdot i \lambda\right)\left(\bar{z}_{k} \phi\left(v_{k}, v_{k}\right) \cdot i \lambda\right) \\
& =-\sum_{k=1}^{n}\left(\mu_{k}^{\lambda}\right)^{2}\left|z_{k}\right|^{2}
\end{aligned}
$$

Consequently, (2) transforms to

$$
\begin{equation*}
\square_{L L}^{\lambda}=-\frac{1}{4} \Delta+2 i \sum_{k=1}^{n} \mu_{k}^{\lambda} \operatorname{Im}\left\{z_{k} \partial_{z_{k}}\right\}+\sum_{k=1}^{n}\left(\mu_{k}^{\lambda}\right)^{2}\left|z_{k}\right|^{2}-\left(\sum_{k \in L} \mu_{k}^{\lambda}-\sum_{k \notin L} \mu_{k}^{\lambda}\right) . \tag{4}
\end{equation*}
$$

We employ the following notation: for $1 \leq j \leq \nu(\lambda)$, define $\epsilon_{j}^{\lambda}(L)=\epsilon_{j}^{\lambda}=$ $\operatorname{sgn}\left(\mu_{j}^{\lambda}\right)$, if $j \in L$ and $\epsilon_{j}^{\lambda}=-\operatorname{sgn}\left(\mu_{j}^{\lambda}\right)$ if $j \notin L$.

Our main result is the following.

Theorem 1 For any $\lambda \in \mathbb{R}^{m}$, the partial Fourier transform of the fundamental solution to the $\square_{L L}$-heat equation satisfies the heat equation

$$
\begin{cases}\frac{\partial \rho}{\partial s}+\square_{L L}^{\lambda} \rho=0 & \text { in }(0, \infty) \times \mathbb{C}^{n} \\ \rho(s=0, z, \widehat{\lambda})=(2 \pi)^{-m / 2} \delta_{0}(z) & \text { on }\{s=0\} \times \mathbb{C}^{n}\end{cases}
$$

and is given by

$$
\begin{aligned}
\rho(s, x, y, \widehat{\lambda})= & \frac{2^{n-v(\lambda)}(2 \pi)^{-(m / 2+n)}}{s^{n-v(\lambda)}} e^{-\frac{\left|x^{\prime \prime}\right|^{2}+\left|y^{\prime \prime}\right|^{2}}{s}} \\
& \times \prod_{j=1}^{v(\lambda)} \frac{2 e^{s \epsilon_{j}^{\lambda}\left|\mu_{j}^{\lambda}\right|} \mu_{j}^{\lambda}}{\sinh \left(s \mu_{j}^{\lambda}\right)} e^{-\mu_{j}^{\lambda} \operatorname{coth}\left(\mu_{j}^{\lambda} s\right)\left(x_{j}^{2}+y_{j}^{2}\right)} .
\end{aligned}
$$

Note that μ_{j}^{λ} and $\operatorname{coth}\left(s \mu_{j}^{\lambda}\right)$ are real-valued and are odd in μ_{j}^{λ}, so putting absolute values around the μ_{j}^{λ} would not change the result. Therefore, there is Gaussian decay in $\left(x_{j}^{2}+y_{j}^{2}\right)$ for all j when $\lambda \in \mathbb{R}^{m}$. Theorem 1 generalizes the case of Theorem 1.2 in [4] where (in the notation given there) $\tau \in \mathbb{R}$ and $\gamma=n-2 q$.

We now cast the heat equation in terms of a weighted $\bar{\partial}$-problem in \mathbb{C}^{n}. Recall that $\bar{Z}_{j}=\frac{\partial}{\partial \bar{z}_{j}}+i \phi(z, v) \cdot D_{t}$. If we denote a superscript λ for the partial Fourier transform in t, then

$$
\bar{Z}_{j} \mapsto \bar{Z}_{j}^{\lambda}=\frac{\partial}{\partial \bar{z}_{j}}-\phi\left(z, v_{j}\right) \cdot \lambda=e^{\phi(z, z) \cdot \lambda} \frac{\partial}{\partial \bar{z}_{j}} e^{-\phi(z, z) \cdot \lambda} .
$$

From the computation of \bar{Z}_{j}, the tangential Cauchy-Riemann operator $\bar{\partial}_{b}$ is defined on ($0, q$)-forms on G by

$$
\bar{\partial}_{b} f(z)=\sum_{\substack{K \in \mathcal{I}_{q+1} \\ J \in \mathcal{I}_{q}}} \sum_{j=1}^{n} \epsilon_{K}^{j J} \bar{Z}_{j} f_{J}(z) d \bar{z}^{K}
$$

where

$$
\epsilon_{K}^{j J}= \begin{cases}(-1)^{\sigma} & \text { if }\{j\} \cup J=K \text { as sets and } \sigma \text { is the sign of } \\ & \text { the permutation taking }\{j\} \cup J \text { to } K, \\ 0 & \text { otherwise. }\end{cases}
$$

This means that if g is a $(0, q)$-form in \mathbb{C}^{n} and we treat λ as a parameter, then the partial Fourier transform in t of $\bar{\partial}_{b}$, denoted by $\bar{\partial}_{b}^{\lambda}$ is given by

$$
\bar{\partial}_{b}^{\lambda} g(z)=e^{\phi(z, z) \cdot \lambda} \bar{\partial}\left\{e^{-\phi(z, z) \cdot \lambda} g\right\}
$$

where $\bar{\partial}$ is the usual Cauchy-Riemann operator on \mathbb{C}^{n}. Since $\square_{b}=\bar{\partial}_{b} \bar{\partial}_{b}^{*}+\bar{\partial}_{b}^{*} \bar{\partial}_{b}$ where $\bar{\partial}_{b}^{*}$ is the L^{2}-adjoint of $\bar{\partial}_{b}$, it follows that $\square_{b}^{\lambda}=\bar{\partial}_{b}^{\lambda}\left(\bar{\partial}_{b}^{\lambda}\right)^{*}+\left(\bar{\partial}_{b}^{\lambda}\right)^{*} \bar{\partial}_{b}^{\lambda}$. Thus, solving for the \square_{b}^{λ}-heat kernel also yields the heat kernel associated with the weighted $\bar{\partial}$-problem on \mathbb{C}^{n} with the weight $e^{-\phi(z, z) \cdot \lambda}$.

Corollary 1 For any $\lambda \in \mathbb{R}^{m}$, the function

$$
H^{\lambda}(s, z, \tilde{z})=(2 \pi)^{m / 2} \rho_{s}(z-\tilde{z}, \widehat{\lambda}) e^{-2 i \lambda \cdot \operatorname{Im} \phi(z, \tilde{z})}
$$

satisfies the following: if

$$
H^{\lambda}\{f\}(s, z)=\int_{\mathbb{C}^{n}} H^{\lambda}(s, z, \tilde{z}) f(\tilde{z}) d \tilde{z}
$$

then $H^{\lambda}\{f\}$ solves the initial value problem for the weighted heat equation:

$$
\begin{cases}\left(\partial_{s}+\square_{b}^{\lambda}\right) H^{\lambda}\{f\}=0 & \text { in }(0, \infty) \times \mathbb{C}^{n} \\ H^{\lambda}\{f\}(s=0, z)=f(z) & \text { on }\{s=0\} \times \mathbb{C}^{n}\end{cases}
$$

In particular, the component of $H^{\lambda}(s, z, \tilde{z})$ on $d \bar{z}^{L}$ for $L \in \mathcal{I}_{q}$ is

$$
\begin{aligned}
H_{L}^{\lambda}(s, z, \tilde{z})= & \frac{2^{n-v(\lambda)}(2 \pi)^{-n}}{s^{n-v(\lambda)}} e^{-\frac{\left|z^{\prime \prime}-z^{\prime \prime}\right|^{2}}{s}} \\
& \times \prod_{j=1}^{\nu(\lambda)} \frac{2 e^{s \epsilon_{j}^{\lambda}\left|\mu_{j}^{\lambda}\right|} \mu_{j}^{\lambda}}{\sinh \left(s \mu_{j}^{\lambda}\right)} e^{-\mu_{j}^{\lambda} \operatorname{coth}\left(\mu_{j}^{\lambda} s\right)\left|z_{j}-\tilde{z}_{j}\right|^{2}} e^{-2 i \lambda \cdot \operatorname{Im} \phi(z, \tilde{z})} .
\end{aligned}
$$

Note that the formula for the heat kernel yields a standard Gaussian solution for the Euclidean heat kernel in the zero eigenvalue directions. Also, the disappearance of the $(2 \pi)^{-m / 2}$ owes to the fact that $\delta_{0}(z, \widehat{\lambda})=(2 \pi)^{-m / 2} \delta_{0}(z)$.

3 Representation Theory

3.1 Irreducible Unitary Representations

For $z=x+i y \in \mathbb{C}^{n}, t, \lambda \in \mathbb{R}^{m}$, and $\eta \in \mathbb{C}^{n-v(\lambda)}$, define $\pi_{\lambda, \eta}(x, y, t): L^{2}\left(\mathbb{R}^{\nu(\lambda)}\right) \mapsto$ $L^{2}\left(\mathbb{R}^{\nu(\lambda)}\right)$ by

$$
\pi_{\lambda, \eta}(x, y, t)(h)(\xi)=e^{i\left(\lambda \cdot t+2 \operatorname{Re}\left(z^{\prime \prime} \cdot \bar{\eta}\right)\right)} e^{-2 i \sum_{j=1}^{v(\lambda)} \mu_{j}^{\lambda} y_{j}^{\lambda}\left(\xi_{j}+x_{j}^{\lambda}\right)} h\left(\xi+2 x^{\prime}\right)
$$

for $h \in L^{2}\left(\mathbb{R}^{\nu(\lambda)}\right)\left(\right.$ so $\left.\xi \in \mathbb{R}^{\nu(\lambda)}\right)$. Note that if $\eta=\zeta+i \zeta$, then $\operatorname{Re}\left(z^{\prime \prime} \cdot \bar{\eta}\right)=x^{\prime \prime} \cdot \zeta+$ $y^{\prime \prime} \cdot 5$.

The map $\pi_{\lambda, \eta}(x, y, t)$ is unitary on $L^{2}\left(\mathbb{R}^{\nu(\lambda)}\right)$. Also, π is a representation for G, which means that for each $\lambda \in \Omega, \pi_{\lambda, \eta}$ is a group homomorphism from G to the group of unitary operators on $L^{2}\left(\mathbb{R}^{\nu(\lambda)}\right)$. Verifying that $\pi_{\lambda, \eta}$ is a representation and that all irreducible representations (up to equivalence) are of the form $\pi_{\lambda, \eta}$ is done in [13]. The formula for $\pi_{\lambda, \eta}$ is motivated by the Stone-von Neumann Theorem and its corollaries. On the Heisenberg group, it is explicitly worked out in [7].

If X is a right invariant vector field, then X gets "transformed" via $\pi_{\lambda, \eta}$ to an operator on $L^{2}\left(\mathbb{R}^{\nu(\lambda)}\right)$ denoted by $T=d \pi_{\lambda, \eta}(X)$. This means that

$$
\begin{equation*}
X\left\{\pi_{\lambda, \eta}(g)\right\}=T \circ \pi_{\lambda, \eta}(g) \tag{5}
\end{equation*}
$$

as operators on $L^{2}\left(\mathbb{R}^{\nu(\lambda)}\right)$. It is usually easy to identify T by seeing what happens at $g=0$ and using the right invariance of X to show that the above equation holds for all $g \in G$. To clarify, let $R_{g}\left(g^{\prime}\right)=g^{\prime} g$ and recall that the vector field X at the point g is given by $X(g)=\left(R_{g}\right)_{*}\{X(0)\}$. If $X\left\{\pi_{\lambda, \eta}\right\}(0)=T \circ \pi_{\lambda, \eta}(0)$, then we have

$$
\begin{aligned}
X\left\{\pi_{\lambda, \eta}\right\}(g) & =\left(R_{g}\right)_{*}\{X(0)\}\left\{\pi_{\lambda, \eta}(g)\right\} \\
& =X\left(g^{\prime}=0\right)\left\{\pi_{\lambda, \eta}\left(R_{g}\left(g^{\prime}\right)\right)\right\} \\
& =X\left(g^{\prime}=0\right)\left\{\pi_{\lambda, \eta}\left(g^{\prime}\right) \pi_{\lambda, \eta}(g)\right\} \quad \text { since } \pi \text { is a homomorphism } \\
& =\left\{X\left(g^{\prime}=0\right) \pi_{\lambda, \eta}\left(g^{\prime}\right)\right\} \circ \pi_{\lambda, \eta}(g) \\
& =T \circ \pi_{\lambda, \eta}(g)
\end{aligned}
$$

where the last equation uses the relationship of $X(g)$ and π at $g=0$.
A similar computation shows that if X^{ℓ} is left invariant, then

$$
X^{\ell}\left\{\pi_{\lambda, \eta}\right\}(g)=\pi_{\lambda, \eta}(g) \circ T
$$

as operators on $L^{2}\left(\mathbb{R}^{v(\lambda)}\right)$. Note that the order of T and $\pi_{\lambda, \eta}$ is reversed from (5). We will not dwell on this point as we prefer the use of right invariant vector fields. The relationship $X\left\{\pi_{\lambda, \eta}\right\}(g)=T \circ \pi_{\lambda, \eta}(g)$ is often expressed using the shorthand: $d \pi_{\lambda, \eta}(X)=T$.

From earlier, we have the right invariant vector fields

$$
X_{j}=\partial_{v_{j}^{\lambda}}-2 \operatorname{Im} \phi\left(z, v_{j}^{\lambda}\right) \cdot D_{t}
$$

and

$$
Y_{j}=\partial_{J v_{j}^{\lambda}}-2 \operatorname{Im} \phi\left(z, i v_{j}^{\lambda}\right) \cdot D_{t}=\partial_{J v_{j}^{\lambda}}+2 \operatorname{Re} \phi\left(z, v_{j}^{\lambda}\right) \cdot D_{t}
$$

where J is the usual complex structure map on $\mathbb{R}^{2 n}=\mathbb{C}^{n}$. In view of (5), we have the following relations: for

$$
\begin{align*}
& X_{j}\left\{\pi_{\lambda, \eta}\right\}(g)= \begin{cases}2 \partial_{\xi_{j}} \circ \pi_{\lambda, \eta}(g), & 1 \leq j \leq v(\lambda), \\
2 i \zeta_{j} \circ \pi_{\lambda, \eta}(g), & v(\lambda)+1 \leq j \leq n,\end{cases} \tag{6}\\
& Y_{j}\left\{\pi_{\lambda, \eta}\right\}(g)= \begin{cases}-2 i \mu_{j}^{\lambda} \xi_{j} \circ \pi_{\lambda, \eta}(g), & 1 \leq j \leq v(\lambda), \\
2 i \zeta_{j} \circ \pi_{\lambda, \eta}(g), & v(\lambda)+1 \leq j \leq n,\end{cases} \tag{7}\\
& \partial_{t_{k}}\left\{\pi_{\lambda, \eta}\right\}(g)=i \lambda_{k} \circ \pi_{\lambda, \eta}(g), \quad 1 \leq k \leq m \tag{8}
\end{align*}
$$

as operators on $L^{2}\left(\mathbb{R}^{\nu(\lambda)}\right)$. In the second equation, ξ_{j} is thought of as a multiplication operator on $L^{2}\left(\mathbb{R}^{\nu(\lambda)}\right)$, i.e., $f(\xi) \mapsto f(\xi) \xi_{j}$. Equations (6) and (7) are easily shown to hold at the origin since $X_{j}(0)=\partial_{x_{j}}$ and $Y_{j}(0)=\partial_{y_{j}}$, and the right invariance forces these equations to hold at all $g \in G$.

Now we compute the "transform" of $\square_{L K}$ in the coordinates $\left(z_{1}^{\lambda}, \ldots, z_{n}^{\lambda}\right)$. Note that

$$
d \pi_{\lambda, \eta}\left[Z_{j}, \bar{Z}_{\ell}\right]= \begin{cases}-2 \mu_{j}^{\lambda} & \text { if } j=\ell \\ 0 & \text { if } j \neq \ell\end{cases}
$$

This follows from (8) and the fact that the coordinates $\left(z_{1}^{\lambda}, \ldots, z_{n}^{\lambda}\right)$ were chosen to diagonalize the form $\phi(z, \tilde{z}) \cdot \lambda$. In view of (1) and (6)-(8), we have

$$
d \pi_{\lambda, \eta} \square_{L K}= \begin{cases}-\Delta_{\xi}+|\eta|^{2}+\sum_{j=1}^{v(\lambda)}\left(\mu_{j}^{\lambda}\right)^{2} \xi_{j}^{2}-\sum_{j=1}^{v(\lambda)} \epsilon_{j}^{\lambda}\left|\mu_{j}^{\lambda}\right| & \text { if } K=L, \tag{9}\\ 0 & \text { if } K \neq L .\end{cases}
$$

We will also need to transform the adjoint of $\square_{L K}$ which is defined as

$$
\int_{(z, t) \in G} \square_{L K}\{f(z, t)\} g(z, t) d x d y d t=\int_{(z, t) \in G} f(z, t) \square_{L K}^{\operatorname{adj}}\{g(z, t)\} d x d y d t
$$

(note: this is the "integration by parts" adjoint, not the L^{2} adjoint, since there is no conjugation). We have

$$
\begin{align*}
Q_{\xi}^{\lambda, \eta, L K} & :=d \pi_{\lambda, \eta} \square_{L K}^{\mathrm{adj}} \\
& = \begin{cases}-\Delta_{\xi}+|\eta|^{2}+\sum_{j=1}^{v(\lambda)}\left(\mu_{j}^{\lambda}\right)^{2} \xi_{j}^{2}+\sum_{j=1}^{v(\lambda)} \epsilon_{j}^{\lambda}\left|\mu_{j}^{\lambda}\right| & \text { if } K=L, \\
0 & \text { if } K \neq L\end{cases} \tag{10}
\end{align*}
$$

(just a sign change for the last term on the right). The subscript ξ on $Q_{\xi}^{\lambda, \eta, L K}$ indicates that this is a differential operator in the ξ variable (instead of the group variable $g=(x, y, t)$). Below, we assume $L=K$ (otherwise the operator is zero) and that L,
λ, and η are fixed. We drop the superscript $L L$ when its use is unambiguous. In view of (1) and (6)-(8), we have

$$
\begin{equation*}
\square_{L L}^{\operatorname{adj}}\left\{\pi_{\lambda, \eta}(g)\right\}=Q_{\xi}^{\lambda, \eta} \circ \pi_{\lambda, \eta}(g) \tag{11}
\end{equation*}
$$

as operators on $L^{2}\left(\mathbb{R}^{\nu(\lambda)}\right)$. We return to this key equation later.

3.2 Group Fourier Transform

For $(z, t) \in G$, we express $(z, t)=(x, y, t)=\left(x^{\prime}, y^{\prime}, x^{\prime \prime}, y^{\prime \prime}, t\right)=\left(x^{\prime}, y^{\prime}, z^{\prime \prime}, t\right)$. The variable $z^{\prime \prime}$ may be thought of as in $\mathbb{C}^{n-v(\lambda)}$ or $\mathbb{R}^{2(n-v(\lambda))}$.

For $f: G \mapsto \mathbb{C}$, we define the group Fourier transform of f as the operator $T_{f}^{\lambda, \eta}$: $L^{2}\left(\mathbb{R}^{\nu(\lambda)}\right) \mapsto L^{2}\left(\mathbb{R}^{\nu(\lambda)}\right)$ where for $h \in L^{2}\left(\mathbb{R}^{\nu(\lambda)}\right)$,

$$
\begin{aligned}
T_{f}^{\lambda, \eta}\{h\}(\xi)= & \int_{(z=x+i y, t) \in G} f(z, t) \pi_{\lambda, \eta}(z, t)(h)(\xi) d x d y d t \\
= & \int_{(z=x+i y, t) \in G} f(z, t) e^{i\left(\lambda \cdot t+2 \operatorname{Re}\left(z^{\prime \prime} \cdot \bar{\eta}\right)\right)} e^{-2 i \sum_{j=1}^{v(\lambda)} \mu_{j}^{\lambda} y_{j}^{\lambda}\left(\xi_{j}+x_{j}^{\lambda}\right)} \\
& \times h\left(\xi+2 x^{\prime}\right) d x d y d t .
\end{aligned}
$$

As before, x_{j}, y_{j} are the coordinates for $x, y \in \mathbb{R}^{n}$ relative to the basis $v_{1}^{\lambda}, \ldots, v_{n}^{\lambda}$. Note that

$$
\begin{aligned}
T_{f}^{\lambda, \eta}\{h\}(\xi)= & (2 \pi)^{(2 n+m-v(\lambda)) / 2} \\
& \times \int_{x^{\prime} \in \mathbb{R}^{v(\lambda)}} f\left(x^{\prime}, 2 \mu^{\lambda} \widehat{\left.\circ\left(\xi+x^{\prime}\right), \widehat{-2 \eta}, \widehat{-\lambda}\right) h\left(\xi+2 x^{\prime}\right) d x^{\prime} .}\right.
\end{aligned}
$$

We have written $\mu^{\lambda} \circ\left(\xi+x^{\prime}\right)$ for $\left(\mu_{1}^{\lambda}\left(\xi_{1}+x_{1}^{\lambda}\right), \ldots, \mu_{v(\lambda)}^{\lambda}\left(\xi_{v(\lambda)}+x_{v(\lambda)}^{\lambda}\right)\right)$. We can also express $T_{f}^{\lambda, \eta}\{h\}$ as

$$
\begin{align*}
& T_{f}^{\lambda, \eta}\{h\}(\xi) \\
& =(2 \pi)^{(2 n+m-v(\lambda)) / 2} \\
& \quad \times \int_{x^{\prime} \in \mathbb{R}^{v(\lambda)}} \mathcal{F}_{x^{\prime \prime}, y, t}\left\{f(x, y, t) e^{-2 i \sum_{j=1}^{\nu(\lambda)} \mu_{j}^{\lambda} x_{j} y_{j}}\right\}\left(x^{\prime}, 2 \mu^{\lambda} \circ \xi,-2 \eta,-\lambda\right) h\left(\xi+2 x^{\prime}\right) d x^{\prime} \tag{12}
\end{align*}
$$

In the above notation, $\mathcal{F}_{x^{\prime \prime}, y, t}$ indicates the Fourier transform in the ($x^{\prime \prime}, y, t$) variables only, whereas \mathcal{F} indicates the Fourier transform in all variables (except s).

In view of (11), we have

$$
\begin{align*}
Q_{\xi}^{\lambda, \eta}\left\{T_{f}^{\lambda, \eta}(h)(\xi)\right\} & =\int_{(z=x+i y, t) \in G} f(z, t) \square_{L L}^{\operatorname{adj}}\left\{\pi_{\lambda, \eta}(z, t) h(\xi)\right\} d x d y d t \\
& =\int_{(z=x+i y, t) \in G} \square_{L L}\{f(z, t)\} \pi_{\lambda, \eta}(z, t) h(\xi) d x d y d t \tag{13}
\end{align*}
$$

4 The Heat Equation

4.1 The Heat Equation on M

Our goal is to find a formula for the fundamental solution to the heat equation (3). We know abstractly that ρ exists: $\square_{L L}$ is self-adjoint and nonnegative, so $e^{-s \square_{L L}}$ is a well-defined, bounded linear operator on $L^{2}(G)$ with norm at most 1 . It has an integral kernel by the Schwartz kernel theorem. For the computations performed here, it suffices to assume that the ρ is smooth and in L^{2} because an a posteriori computation verifies that ρ is the unique fundamental solution to the $\square_{L L}$-heat equation.

Let us apply the group Fourier transform to ρ and recall that $\rho_{s}(z, t)=\rho(s, z, t)$. Define the operator $U^{\lambda, \eta}(s): L^{2}\left(\mathbb{R}^{\nu(\lambda)}\right) \mapsto L^{2}\left(\mathbb{R}^{\nu(\lambda)}\right)$ by

$$
\begin{equation*}
U^{\lambda, \eta}(s)\{h\}(\xi)=T_{\rho_{s}}^{\lambda, \eta}\{h\}(\xi)=\int_{(z, t) \in G} \rho_{s}(z, t) \pi_{\lambda, \eta}(z, t) h(\xi) d z d t \tag{14}
\end{equation*}
$$

In view of (13) and the fact that $\rho_{s}(z, t)$ solves the heat equation, we have

$$
\begin{aligned}
Q_{\xi}^{\lambda, \eta}\left\{U^{\lambda, \eta}(s)\{h\}(\xi)\right\} & =\int_{(z, t) \in G} \square_{L L}\left\{\rho_{s}(z, t)\right\} \pi_{\lambda, \eta}(z, t) h(\xi) d z d t \\
& =-\partial_{s}\left\{\int_{(z, t) \in G} \rho_{s}(z, t) \pi_{\lambda, \eta}(z, t) h(\xi) d z d t\right\} \\
& =-\partial_{s}\left\{U^{\lambda, \eta}(s)\{h\}(\xi)\right\}
\end{aligned}
$$

Also

$$
U^{\lambda, \eta}(s=0)\{h\}(\xi)=T_{\delta_{0}}^{\lambda, \eta}\{h\}(\xi)=h(\xi) .
$$

Therefore, we conclude that $U^{\lambda, \eta}(s)$ satisfies the following boundary value problem:

$$
\begin{equation*}
Q_{\xi}^{\lambda, \eta}\left\{U^{\lambda}(s)\right\}=-\partial_{s}\left\{U^{\lambda}(s)\right\} \quad \text { and } \quad U^{\lambda}(s=0)=\mathrm{Id} \tag{15}
\end{equation*}
$$

where Id is the identity operator on $L^{2}\left(\mathbb{R}^{\nu(\lambda)}\right)$. This is a Hermite equation similar to, though more complicated than, the one we solved in the Heisenberg group case [4]. So, our approach is to proceed as follows: 1) explicitly solve this Hermite equation, and then 2) recover the fundamental solution to the heat equation.

As to the second task, we let $a \in \mathbb{R}^{\nu(\lambda)}$ be an arbitrary vector, and then define $h_{a}(\xi)=(2 \pi)^{-n-m / 2} e^{-i \xi \cdot a}$. Let

$$
u^{\lambda, \eta}(s, a, \xi)=U^{\lambda, \eta}(s)\left\{h_{a}\right\}(\xi)
$$

The above definition needs explanation since $h_{a} \notin L^{2}\left(\mathbb{R}^{v(\lambda)}\right)$. For each fixed $s>0$, $\rho_{s} \in L^{2}(G)$ and we can approximate ρ_{s} by $\rho_{s}^{\delta} \in L^{1} \cap L^{2}(G)$ (e.g., by multiplying ρ_{s} with an appropriate test function). Then, as we see below, we can define $U_{\delta}^{\lambda, \eta}(s)\left\{h_{a}\right\}(\xi)=T_{\rho_{s}^{\delta}}^{\lambda, \eta}\left\{h_{a}\right\}(\xi)$ since in view of (12),

$$
\begin{aligned}
U_{\delta}^{\lambda, \eta} & (s)\left\{h_{a}\right\}(\xi) \\
= & \frac{1}{(2 \pi)^{v(\lambda) / 2}} \\
& \times \int_{x^{\prime} \in \mathbb{R}^{v(\lambda)}} \mathcal{F}_{x^{\prime \prime}, y, t}\left\{\rho_{s}^{\delta}(x, y, t) e^{-2 i \sum_{j=1}^{v(\lambda)} \mu_{j}^{\lambda} y_{j} x_{j}}\right\}\left(x^{\prime}, 2 \mu^{\lambda} \circ \xi,-2 \eta,-\lambda\right) e^{-i\left(\xi+2 x^{\prime}\right) \cdot a} d x^{\prime} \\
= & \mathcal{F}\left\{\rho_{s}^{\delta}(x, y, t) e^{-2 i \sum_{j=1}^{v(\lambda)} \mu_{j}^{\lambda} y_{j} x_{j}}\right\}\left(2 a, 2 \mu^{\lambda} \circ \xi,-2 \eta,-\lambda\right) e^{-i \xi \cdot a} .
\end{aligned}
$$

By the definition of the Fourier transform in L^{2},

$$
\begin{aligned}
& \mathcal{F}\left\{\rho_{s}^{\delta}(x, y, t) e^{-2 i \sum_{j=1}^{v(\lambda)} \mu_{j}^{\lambda} y_{j} x_{j}}\right\}\left(2 a, 2 \mu^{\lambda} \circ \xi,-2 \eta,-\lambda\right) e^{-i \xi \cdot a} \\
& \quad \longrightarrow \mathcal{F}\left\{\rho_{s}(x, y, t) e^{-2 i \sum_{j=1}^{v(\lambda)} \mu_{j}^{\lambda} y_{j} x_{j}}\right\}\left(2 a, 2 \mu^{\lambda} \circ \xi,-2 \eta,-\lambda\right) e^{-i \xi \cdot a}
\end{aligned}
$$

in $L^{2}\left(\mathbb{R}^{\nu(\lambda)}\right)$ as $\delta \rightarrow 0$. Thus, $u^{\lambda, \eta}(s, a, \xi)$ is well-defined. In the above computation, we view $\eta=(\zeta, \varsigma) \in \mathbb{R}^{2(n-v(\lambda))}$. Also, the motivation for the choice of $h=h_{a}$ is that it offers the "missing" exponential needed to relate the full Fourier transform of ρ_{s} with $u^{\lambda, \eta}$. Now it is just a matter of unraveling the equation

$$
\begin{equation*}
u^{\lambda, \eta}(s, a, \xi)=\mathcal{F}\left\{\rho_{s}(x, y, t) e^{-2 i \sum_{j=1}^{v(\lambda)} \mu_{j}^{\lambda} y_{j}^{\lambda} x_{j}^{\lambda}}\right\}\left(2 a, 2 \mu^{\lambda} \circ \xi,-2 \eta,-\lambda\right) e^{-i \xi \cdot a} \tag{16}
\end{equation*}
$$

for ρ_{s} using the inverse Fourier transform.
Before we go on, let us remark that had we used left invariant vector fields rather than right invariant ones, then the transformed operator, $Q_{\xi}^{\lambda, \eta}$ would appear on the right of the group transform. That is to say, we would be trying to solve the following analogue of (15)

$$
\partial_{s}\left\{T_{\rho_{s}}^{\lambda}\right\}=-T_{\rho_{s}}^{\lambda} \tilde{Q}_{\xi}^{\lambda, \eta} \quad \text { and } \quad T_{\rho_{s=0}}^{\lambda}=\mathrm{Id}
$$

where $\tilde{Q}_{\xi}^{\lambda, \eta}$ is a Hermite type differential operator similar to $Q_{\xi}^{\lambda, \eta}$. Note the transform operator T^{λ} is now intertwined with the differential operators (i.e., ∂_{s} is on the left side and $\tilde{Q}_{\xi}^{\lambda, \eta}$ is on the right). Since the inversion formula for the group transform operator is complicated (see [13]), it would appear that using left invariant vector fields makes it more difficult to unravel a formula for ρ.

4.2 Weighted Heat Equation

Our objective is to compute $\rho_{s}\left(x^{\prime}, y^{\prime}, \widehat{\eta}, \widehat{\lambda}\right)$ by solving the weighted heat equation obtained by taking the partial Fourier transform in the t and $\left(x^{\prime \prime}, y^{\prime \prime}\right)$-variables. We obtain the $\square_{L L}^{\lambda, \eta}$-heat equation

$$
\left\{\begin{array}{l}
\partial_{s} \rho_{s}\left(x^{\prime}, y^{\prime}, \widehat{\eta}, \widehat{\lambda}\right)=-\square_{L L}^{\lambda, \eta} \rho_{s}\left(x^{\prime}, y^{\prime}, \widehat{\eta}, \widehat{\lambda}\right), \\
\rho_{s=0}\left(x^{\prime}, y^{\prime}, \widehat{\eta}, \widehat{\lambda}\right)=(2 \pi)^{-m / 2-(n-v(\lambda))} \delta_{0}\left(x^{\prime}, y^{\prime}\right)
\end{array}\right.
$$

From (4), we have

$$
\square_{L L}^{\lambda, \eta}=-\frac{1}{4} \Delta+\frac{1}{4}|\eta|^{2}+2 i \sum_{j=1}^{\nu(\lambda)} \mu_{j}^{\lambda} \operatorname{Im}\left\{z_{j} \partial_{z_{j}}\right\}+\sum_{j=1}^{\nu(\lambda)}\left|z_{j} \mu_{j}^{\lambda}\right|^{2}-\sum_{j=1}^{\nu(\lambda)} \epsilon_{j}^{\lambda}\left|\mu_{j}^{\lambda}\right|
$$

In the following computation, we find a formula of $\rho_{s}\left(x^{\prime}, y^{\prime}, \widehat{\eta}, \widehat{\lambda}\right)$. Observe that $\mu_{j}^{-\lambda}=-\mu_{j}^{\lambda}$ and $\epsilon_{j}^{-\lambda}=-\epsilon_{j}^{\lambda}$. (Note that $v_{j}^{-\lambda}=v_{j}^{\lambda}$, so we can continue to suppress the λ superscript on x_{j} and y_{j}.) We unravel (16) to obtain (with $a, b \in \mathbb{R}^{\nu(\lambda)}$)

$$
\begin{equation*}
\rho_{s}\left(x^{\prime}, y^{\prime}, \widehat{\eta}, \widehat{\lambda}\right)=e^{-2 i \sum_{j=1}^{v(\lambda)} \mu_{j}^{\lambda} x_{j} y_{j}} \mathcal{F}_{a, b}^{-1}\left(e^{-\frac{i}{4} \sum_{j=1}^{\nu(\lambda)} a_{j} b_{j} / \mu_{j}^{\lambda}} \tilde{u}^{\lambda, \eta}(s, a, b)\right)\left(x^{\prime}, y^{\prime}\right) \tag{17}
\end{equation*}
$$

where $\tilde{u}^{\lambda, \eta}(s, a, b)=u^{-\lambda,-\frac{1}{2} \eta}\left(s, a / 2, b /\left(2 \mu^{-\lambda}\right)\right)$ and $b /\left(2 \mu^{-\lambda}\right)$ is the vector quantity whose j th component is $b_{j} /\left(2 \mu_{j}^{-\lambda}\right)$. As we shall see, the inverse Fourier transform in the a and b variables will be relatively simple (using Gaussian integrals). In the next section, we use Hermite functions to solve for $\tilde{u}^{\lambda, \eta}$ on the "transform" side. Then we return to the above formula to compute $\rho_{s}\left(x^{\prime}, y^{\prime}, \widehat{\eta}, \widehat{\lambda}\right)$.

5 Computing the Heat Kernels

In this section, we prove Theorem 1 and Corollary 1.

5.1 Hermite Functions

Our starting point is (15), which we restate as $Q_{\xi}^{\lambda, \eta}\left\{U^{\lambda, \eta}(s)\right\}=-\partial_{s}\left\{U^{\lambda, \eta}(s)\right\}$ where

$$
Q_{\xi}^{\lambda, \eta}=-\Delta_{\xi}+|\eta|^{2}+\sum_{j=1}^{v(\lambda)}\left(\mu_{j}^{\lambda} \xi_{j}\right)^{2}+\sum_{j=1}^{\nu(\lambda)} \epsilon_{j}^{\lambda}\left|\mu_{j}^{\lambda}\right|
$$

We use Hermite functions to solve this equation. For a nonnegative integer ℓ, define

$$
\psi_{\ell}(x)=\frac{(-1)^{\ell}}{2^{\ell / 2} \pi^{1 / 4}(\ell!)^{1 / 2}} \frac{d^{\ell}}{d x^{\ell}}\left\{e^{-x^{2}}\right\} e^{x^{2} / 2}, \quad x \in \mathbb{R}
$$

Each ψ_{ℓ} has unit L^{2}-norm on the real line and satisfies the equation

$$
-\psi_{\ell}^{\prime \prime}(x)+x^{2} \psi_{\ell}(x)=(2 \ell+1) \psi_{\ell}(x)
$$

see [19], (1.1.9). For $\lambda \in \mathbb{R}^{m} \backslash\{0\}$, define

$$
\psi_{\ell_{j}}^{\lambda}\left(\xi_{j}\right)=\psi_{\ell_{j}}\left(\left|\mu_{j}^{\lambda}\right|^{1 / 2} \xi_{j}\right)\left|\mu_{j}^{\lambda}\right|^{1 / 4} .
$$

Each $\psi_{\ell_{j}}^{\lambda}\left(\xi_{j}\right)$ has unit L^{2}-norm on \mathbb{R} and hence ψ_{ℓ}^{λ} has unit L^{2}-norm on $\mathbb{R}^{v(\lambda)}$. An easy calculation shows that

$$
\begin{equation*}
\left(-\partial_{\xi_{j} \xi_{j}}+\left(\mu_{j}^{\lambda} \xi_{j}\right)^{2}\right)\left\{\psi_{\ell_{j}}^{\lambda}\left(\xi_{j}\right)\right\}=\left(2 \ell_{j}+1\right) \psi_{\ell_{j}}^{\lambda}\left(\xi_{j}\right)\left|\mu_{j}^{\lambda}\right| . \tag{18}
\end{equation*}
$$

For $s>0$, we claim that $U^{\lambda, \eta}(s): L^{2}\left(\mathbb{R}^{\nu(\lambda)}\right) \mapsto L^{2}\left(\mathbb{R}^{\nu(\lambda)}\right)$ as defined in (14) is given by

$$
U^{\lambda, \eta}(s)=e^{-s|\eta|^{2}} \bigotimes_{j=1}^{v(\lambda)} \sum_{\ell_{j}=0}^{\infty} e^{-\left[\left(2 \ell_{j}+1\right)+\epsilon_{j}^{\lambda}\right]\left|\mu_{j}^{\lambda}\right| s} P_{\ell_{j}}^{\lambda}
$$

where $P_{\ell_{j}}^{\lambda}$ is the L^{2} projection of a smooth function of polynomial growth in the variable ξ_{j} onto the space spanned by $\psi_{\ell_{j}}^{\lambda}\left(\xi_{j}\right)$, and where $\bigotimes_{j=1}^{\nu(\lambda)}$ is the tensor product (so that the output of $U^{\lambda, \eta}(s)$ is a function of $\left.\xi_{1}, \ldots, \xi_{v(\lambda)}\right)$. For shorthand, we write

$$
E_{\ell_{j}}^{\lambda}(s)=e^{-\left[\left(2 \ell_{j}+1\right)+\epsilon_{j}^{\lambda}\right]\left|\mu_{j}^{\lambda}\right| s} .
$$

We then have $U^{\lambda, \eta}(s)=e^{-s|\eta|^{2}} \bigotimes_{j=1}^{\nu(\lambda)} \sum_{\ell_{j}=0}^{\infty} E_{\ell_{j}}^{\lambda}(s) P_{\ell_{j}}^{\lambda}$. Using the product rule, we compute

$$
\begin{aligned}
& \partial_{s}\left\{U^{\lambda, \eta}(s)\right\} \\
&=-|\eta|^{2} U^{\lambda, \eta}(s)+e^{-s|\eta|^{2}} \sum_{j=1}^{v(\lambda)} \partial_{s}\left(\sum_{\ell_{j}=0}^{\infty} E_{\ell_{j}}^{\lambda}(s) P_{\ell_{j}}^{\lambda}\right) \bigotimes_{\substack{k=1 \\
k \neq j}}^{v(\lambda)} \sum_{\ell_{k}=0}^{\infty} E_{\ell_{k}}^{\lambda}(s) P_{\ell_{k}}^{\lambda} \\
&=-|\eta|^{2} U^{\lambda, \eta}(s)+e^{-s|\eta|^{2}} \sum_{j=1}^{v(\lambda)} \sum_{\ell_{j}=0}^{\infty}-\left[\left(2 \ell_{j}+1\right)+\epsilon_{j}^{\lambda}\right]\left|\mu_{j}^{\lambda}\right| \\
& \times e^{-\left[\left(2 \ell_{j}+1\right)+\epsilon_{j}^{\lambda}\right]\left|\mu_{j}^{\lambda}\right| s} P_{\ell_{j}}^{\lambda} \bigotimes_{\substack{k=1 \\
k \neq j}}^{v(\lambda)} \sum_{\ell_{k}=0}^{\infty} E_{\ell_{k}}^{\lambda}(s) P_{\ell_{k}}^{\lambda} \\
&=-|\eta|^{2} U^{\lambda, \eta}(s)+e^{-s|\eta|^{2}} \sum_{j=1}^{v(\lambda)} \sum_{\ell_{j}=0}^{\infty}\left(\partial_{\xi_{j} \xi_{j}}-\left(\mu_{j}^{\lambda} \xi_{j}\right)^{2}-\epsilon_{j}^{\lambda}\left|\mu_{j}^{\lambda}\right|\right) \\
& \circ e^{-\left[\left(2 \ell_{j}+1\right)+\epsilon_{j}^{\lambda}\right]\left|\mu_{j}^{\lambda}\right| s} P_{\ell_{j}}^{\lambda} \bigotimes_{\substack{k=1 \\
k \neq j}}^{v(\lambda)} \sum_{\ell_{k}=0}^{\infty} E_{\ell_{k}}^{\lambda}(s) P_{\ell_{k}}^{\lambda}
\end{aligned}
$$

where the last equality uses (18). Since the differential operator on the right is independent of ℓ_{j}, we can factor it to the left of $\sum_{\ell_{j}}$ to obtain

$$
\partial_{s}\left\{U^{\lambda, \eta}(s)\right\}=-Q_{\xi}^{\lambda, \eta}\left\{U^{\lambda, \eta}(s)\right\} .
$$

Since the Hermite functions, ψ_{ℓ}^{λ}, form an orthonormal basis for $L^{2}(\mathbb{R}), U^{\lambda, \eta}(s=0)$ is just the identity operator. Thus $U^{\lambda, \eta}(s)$ solves (15).

As above, we apply $U^{\lambda, \eta}(s)$ to the function $h_{a}(\xi)=(2 \pi)^{-n-m / 2} e^{-i \xi \cdot a}$ to obtain the fundamental solution ρ_{s}. We therefore obtain

$$
\begin{aligned}
u^{\lambda, \eta}(s, a, \xi) & =U^{\lambda, \eta}(s)\left\{h_{a}(\xi)\right\} \\
& =(2 \pi)^{-n-m / 2} e^{-s|\eta|^{2}} \prod_{j=1}^{\nu(\lambda)} \sum_{\ell_{j}=0}^{\infty} E_{\ell_{j}}^{\lambda}(s) P_{\ell_{j}}^{\lambda}\left\{e^{-i \xi_{j} a_{j}}\right\} .
\end{aligned}
$$

Since h_{a} belongs to $L^{\infty}\left(\mathbb{R}^{\nu(\lambda)}\right)$ and not in $L^{2}\left(\mathbb{R}^{\nu(\lambda)}\right)$, the above sum converges a priori in the sense of tempered distributions (as opposed to L^{2} convergence). Earlier, we argued that we can obtain $U^{\lambda, \eta}(s)\left\{h_{a}\right\}$ via a standard approximation argument, however, we will see below that the convergence is much stronger and the result is a smooth function in s, a, ξ. Each projection term on the right is

$$
\begin{aligned}
P_{\ell_{j}}^{\lambda}\left(e^{-i \xi_{j} a_{j}}\right) & =\left(\int_{\tilde{\xi}_{j} \in \mathbb{R}} e^{-i \tilde{\xi}_{j} a_{j}} \psi_{\ell_{j}}\left(\left|\mu_{j}^{\lambda}\right|^{1 / 2} \tilde{\xi}_{j}\right)\left|\mu_{j}^{\lambda}\right|^{1 / 4} d \tilde{\xi}_{j}\right)\left|\mu_{j}^{\lambda}\right|^{1 / 4} \psi_{\ell_{j}}\left(\left|\mu_{j}^{\lambda}\right|^{1 / 2} \xi_{j}\right) \\
& =(2 \pi)^{1 / 2} \widehat{\psi_{\ell_{j}}}\left(a_{j} /\left|\mu_{j}^{\lambda}\right|^{1 / 2}\right) \psi_{\ell_{j}}\left(\left|\mu_{j}^{\lambda}\right|^{1 / 2} \xi_{j}\right) \\
& =(2 \pi)^{1 / 2}(-i)^{\ell_{j}} \psi_{\ell_{j}}\left(a_{j} /\left|\mu_{j}^{\lambda}\right|^{1 / 2}\right) \psi_{\ell_{j}}\left(\left|\mu_{j}^{\lambda}\right|^{1 / 2} \xi_{j}\right)
\end{aligned}
$$

where the last equality uses a standard fact about Hermite functions that they equal their Fourier transforms up to a factor of $(-i)^{\ell_{j}}$. Substituting this expression on the right into the definition of $u^{\lambda, \eta}(s, a, \xi)$, we obtain

$$
\begin{aligned}
u^{\lambda, \eta}(s, a, \xi)= & (2 \pi)^{-n-m / 2+\nu(\lambda) / 2} e^{-s|\eta|^{2}} \\
& \times \prod_{j=1}^{\nu(\lambda)} \sum_{\ell_{j}=0}^{\infty} E_{\ell_{j}}^{\lambda}(s)(-i)^{\ell_{j}} \psi_{\ell_{j}}\left(a_{j} /\left|\mu_{j}^{\lambda}\right|^{1 / 2}\right) \psi_{\ell_{j}}\left(\left|\mu_{j}^{\lambda}\right|^{1 / 2} \xi_{j}\right)
\end{aligned}
$$

This function satisfies

$$
\begin{aligned}
\partial_{s} u^{\lambda, \eta}(s, a, \xi) & =-Q_{\xi}^{\lambda, \eta}\left\{u^{\lambda, \eta}(s, a, \xi)\right\} \\
u^{\lambda, \eta}(s=0, a, \xi) & =h_{a}(\xi)=(2 \pi)^{-n-m / 2} e^{-i a \cdot \xi} .
\end{aligned}
$$

In view of (17), for computing $\rho_{s}\left(x^{\prime}, y^{\prime}, \widehat{\eta}, \widehat{\lambda}\right)$, we need to compute

$$
\tilde{u}^{\lambda, \eta}(s, a, b)=u^{-\lambda,-\frac{1}{2} \eta}\left(s, a / 2, b /\left(2 \mu^{-\lambda}\right)\right)
$$

where $b /\left(2 \mu^{-\lambda}\right)$ is the vector quantity whose j th component is $b_{j} /\left(2 \mu_{j}^{-\lambda}\right)$. From the previous equality, and using that $\mu_{j}^{-\lambda}=-\mu_{j}^{\lambda}, \epsilon_{j}^{-\lambda}=-\epsilon_{j}^{\lambda}$, we have

$$
\begin{aligned}
\tilde{u}^{\lambda, \eta}(s, a, b)= & (2 \pi)^{-\frac{1}{2}(n+m+(n-\nu(\lambda)))} e^{-s \frac{|n|^{2}}{4}} \prod_{j=1}^{v(\lambda)} e^{-\left(1-\epsilon_{j}^{\lambda}\right)\left|\mu_{j}^{\lambda}\right| s} \\
& \times \sum_{\ell_{j}=0}^{\infty}(-i)^{\ell_{j}} \psi_{\ell_{j}}\left(a_{j} / 2\left|\mu_{j}^{\lambda}\right|^{1 / 2}\right) \psi_{\ell_{j}}\left(b_{j}\left|\mu_{j}^{\lambda}\right|^{1 / 2} / 2 \mu_{j}^{-\lambda}\right) e^{-2 \ell_{j}\left|\mu_{j}^{\lambda}\right| s} .
\end{aligned}
$$

Let

$$
\begin{equation*}
S_{j}=e^{-2\left|\mu_{j}^{\lambda}\right| s}, \quad \alpha_{j}=\frac{a_{j}}{2\left|\mu_{j}^{\lambda}\right|^{1 / 2}}, \quad \beta_{j}=\frac{-b_{j}\left|\mu_{j}^{\lambda}\right|^{1 / 2}}{2 \mu_{j}^{\lambda}} \tag{19}
\end{equation*}
$$

Then

$$
\tilde{u}^{\lambda, \eta}(s, a, b)=(2 \pi)^{-\frac{1}{2}(n+m+(n-v(\lambda)))} e^{-s \frac{|\eta|^{2}}{4}} \prod_{j=1}^{\nu(\lambda)} S_{j}^{\left(1-\epsilon_{j}^{\lambda}\right) / 2} \sum_{\ell=0}^{\infty}\left(-i S_{j}\right)^{\ell} \psi_{\ell}\left(\alpha_{j}\right) \psi_{\ell}\left(\beta_{j}\right) .
$$

Using Mehler's formula ([19], Lemma 1.1.1) for Hermite functions, we obtain

$$
\begin{aligned}
\tilde{u}^{\lambda, \eta}(s, a, b)= & (2 \pi)^{-(m / 2+n)} 2^{v(\lambda) / 2} e^{-s \frac{|\eta|^{2}}{4}} \prod_{j=1}^{v(\lambda)} S_{j}^{\left(1-\epsilon_{j}^{\lambda}\right) / 2} \\
& \times \frac{1}{\sqrt{1+S_{j}^{2}}} e^{-\frac{1}{2}\left(\frac{1-S_{j}^{2}}{1+S_{j}^{2}}\right)\left(\alpha_{j}^{2}+\beta_{j}^{2}\right)-\frac{2 i S_{j} \alpha_{j} \beta_{j}}{1+S_{j}^{2}}} .
\end{aligned}
$$

The series for $\tilde{u}^{\lambda, \eta}$ converges in C^{∞} on the unit disk in \mathbb{C}, and therefore the series for $\tilde{u}^{\lambda, \eta}$ converges in \mathbb{C}^{∞} for $s>0$, justifying many previous computations (which held a priori in the category of tempered distributions).

5.2 Finishing the Proof of Theorem 1

In view of (17), to determine $\rho_{s}\left(x^{\prime}, y^{\prime}, \widehat{\eta}, \widehat{\lambda}\right)$, we must compute

$$
\mathcal{F}_{a, b}^{-1}\left(e^{-i \sum_{j=1}^{v(\lambda)} a_{j} b_{j} /\left(4 \mu_{j}^{\lambda}\right)} \tilde{u}^{\lambda, \eta}(s, a, b)\right)\left(x^{\prime}, y^{\prime}\right)
$$

Using (19) and simplifying, we obtain

$$
\begin{aligned}
& e^{-i \sum_{j=1}^{v(\lambda)} a_{j} b_{j} /\left(4 \mu_{j}^{\lambda}\right)} \tilde{u}^{\lambda, \eta}(s, a, b) \\
& \quad=(2 \pi)^{-(m / 2+n)} e^{-s \frac{|n|^{2}}{4}} \prod_{j=1}^{v(\lambda)} \frac{e^{\epsilon_{j}^{\lambda}\left|\mu_{j}^{\lambda}\right| s}}{\sqrt{\cosh \left(2\left|\mu_{j}^{\lambda}\right| s\right)}} e^{-A_{j}\left(a_{j}^{2}+b_{j}^{2}\right) / 2-i B_{j} a_{j} b_{j}}
\end{aligned}
$$

where

$$
A_{j}=\frac{\tanh \left(2\left|\mu_{j}^{\lambda}\right| s\right)}{4\left|\mu_{j}^{\lambda}\right|}, \quad B_{j}=\frac{\sinh ^{2}\left(\left|\mu_{j}^{\lambda}\right| s\right)}{2 \mu_{j}^{\lambda} \cosh \left(2\left|\mu_{j}^{\lambda}\right| s\right)}
$$

After an exercise in computing Gaussian integrals, we obtain

$$
\begin{aligned}
& \mathcal{F}_{a, b}^{-1}\left\{e^{-i \sum_{j=1}^{v(\lambda)} a_{j} b_{j} /\left(4 \mu_{j}^{\lambda}\right)} \tilde{u}^{\lambda, \eta}(s, a, b)\right\}\left(x^{\prime}, y^{\prime}\right) \\
& \quad=(2 \pi)^{-(m / 2+n)} e^{-s \frac{|\eta|^{2}}{4}} \prod_{j=1}^{v(\lambda)} \frac{e^{\epsilon_{j}^{\lambda}\left|\mu_{j}^{\lambda}\right| s}}{\sqrt{\cosh \left(2\left|\mu_{j}^{\lambda}\right| s\right)}} \frac{e^{\frac{-A_{j}}{2\left(A_{j}^{2}+B_{j}^{2}\right)}\left(x_{j}^{2}+y_{j}^{2}\right)+i \frac{B_{j} x_{j} y_{j}}{A_{j}^{2}+B_{j}^{2}}}}{\sqrt{A_{j}^{2}+B_{j}^{2}}} .
\end{aligned}
$$

After simplifying,

$$
\begin{aligned}
& \frac{-A_{j}}{2\left(A_{j}^{2}+B_{j}^{2}\right)}=-\mu_{j}^{\lambda} A_{j} / B_{j}, \quad \frac{B_{j}}{A_{j}^{2}+B_{j}^{2}}=2 \mu_{j}^{\lambda} \\
& \sqrt{\cosh \left(2\left|\mu_{j}^{\lambda}\right| s\right)} \sqrt{A_{j}^{2}+B_{j}^{2}}=\frac{\sinh \left(s\left|\mu_{j}^{\lambda}\right|\right)}{2\left|\mu_{j}^{\lambda}\right|}
\end{aligned}
$$

The previous expression becomes

$$
\begin{aligned}
& \mathcal{F}_{a, b}^{-1}\left(e^{-i \sum_{j=1}^{v(\lambda)} a_{j} b_{j} /\left(4 \mu_{j}^{\lambda}\right)} \tilde{u}^{\lambda, \eta}(s, a, b)\right)\left(x^{\prime}, y^{\prime}\right) \\
& \quad=(2 \pi)^{-(m / 2+n)} e^{-s \frac{|\eta|^{2}}{4}} \prod_{j=1}^{v(\lambda)} \frac{2 e^{\epsilon_{j}^{\lambda}\left|\mu_{j}^{\lambda}\right| s}\left|\mu_{j}^{\lambda}\right|}{\sinh \left(s\left|\mu_{j}^{\lambda}\right|\right)} e^{-\mu_{j}^{\lambda}\left(A_{j} / B_{j}\right)\left(x_{j}^{2}+y_{j}^{2}\right)+2 i \mu_{j}^{\lambda} x_{j} y_{j}} .
\end{aligned}
$$

In view of (17), the fundamental solution $\rho_{s}\left(x^{\prime}, y^{\prime}, \widehat{\eta}, \widehat{\lambda}\right)$ to the weighted heat equation is obtained by multiplying this expression by $\prod_{j=1}^{v(\lambda)} e^{-2 i \mu_{j}^{\lambda} x_{j} y_{j}}$ which cancels the similar expression on the right side. We therefore obtain

$$
\rho_{s}\left(x^{\prime}, y^{\prime}, \widehat{\eta}, \widehat{\lambda}\right)=(2 \pi)^{-(m / 2+n)} e^{-s \frac{|\eta|^{2}}{4}} \prod_{j=1}^{v(\lambda)} \frac{2 e^{\epsilon_{j}^{\lambda}\left|\mu_{j}^{\lambda}\right| s}\left|\mu_{j}^{\lambda}\right|}{\sinh \left(s\left|\mu_{j}^{\lambda}\right|\right)} e^{-\mu_{j}^{\lambda}\left(A_{j} / B_{j}\right)\left(x_{j}^{2}+y_{j}^{2}\right)} .
$$

Note that the rightmost exponent can be rewritten as

$$
-\mu_{j}^{\lambda}\left(A_{j} / B_{j}\right)\left(x_{j}^{2}+y_{j}^{2}\right)=-\frac{\left|\mu_{j}^{\lambda}\right| \sinh \left(2\left|\mu_{j}^{\lambda}\right| s\right)}{2 \sinh ^{2}\left(\left|\mu_{j}^{\lambda}\right| s\right)}\left(x_{j}^{2}+y_{j}^{2}\right)=-\mu_{j}^{\lambda} \operatorname{coth}\left(\mu_{j}^{\lambda} s\right)\left(x_{j}^{2}+y_{j}^{2}\right) .
$$

Consequently,

$$
\begin{aligned}
\rho_{s}(x, y, \widehat{\lambda})= & \frac{2^{n-v(\lambda)}(2 \pi)^{-(m / 2+n)}}{s^{n-v(\lambda)}} e^{-\frac{\left|x^{\prime \prime}\right|^{2}+\left|y^{\prime \prime}\right|^{2}}{s}} \\
& \times \prod_{j=1}^{v(\lambda)} \frac{2 e^{\epsilon_{j}^{\lambda}\left|\mu_{j}^{\lambda}\right| s}\left|\mu_{j}^{\lambda}\right|}{\sinh \left(s\left|\mu_{j}^{\lambda}\right|\right)} e^{-\mu_{j}^{\lambda} \operatorname{coth}\left(\mu_{j}^{\lambda} s\right)\left(x_{j}^{2}+y_{j}^{2}\right)} .
\end{aligned}
$$

This completes the proof of Theorem 1 for $\lambda \in \Omega$.

5.3 The Proof of Corollary 1

In this subsection and the next, we show that the following kernel:

$$
\begin{align*}
H^{\lambda}(s, z, \tilde{z})= & (2 \pi)^{m / 2} \rho_{s}(z-\tilde{z}, \widehat{\lambda}) e^{-2 i \lambda \cdot \operatorname{Im} \phi(z, \tilde{z})} \\
= & \frac{2^{n-v(\lambda)}(2 \pi)^{-n}}{s^{n-v(\lambda)}} \\
& \times e^{-\frac{\mid z^{\prime \prime}-\tilde{z}^{\prime \prime \prime}}{s}} \prod_{j=1}^{v(\lambda)} \frac{2 e^{\epsilon_{j}^{\lambda}\left|\mu_{j}^{\lambda}\right| s}\left|\mu_{j}^{\lambda}\right|}{\sinh \left(s\left|\mu_{j}^{\lambda}\right|\right)} e^{-\mu_{j}^{\lambda} \operatorname{coth}\left(\mu_{j}^{\lambda} s\right)\left|z_{j}-\tilde{z}_{j}\right|^{2}} e^{-2 i \lambda \cdot \operatorname{Im} \phi(z, \tilde{z})} \tag{20}
\end{align*}
$$

is the heat kernel for the weighted $\bar{\partial}$-operator in \mathbb{C}^{n}. Here, $z=x+i y$ and $\tilde{z}=\tilde{x}+i \tilde{y}$. Note that H is conjugate symmetric, i.e., $H^{\lambda}(s, \tilde{z}, z)=\overline{H^{\lambda}(s, z, \tilde{z})}$. We will show that the heat kernel has the following properties: if $f \in L^{2}\left(\mathbb{C}^{n}\right)$, then

$$
H^{\lambda}\{f\}(s, x, y)=\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} H^{\lambda}(s, x, y, \tilde{x}, \tilde{y}) f(\tilde{x}, \tilde{y}) d \tilde{x} d \tilde{y}
$$

is the solution to the following boundary value problem for the heat equation:

$$
\left(\partial_{s}+\square_{b}^{\lambda}\right)\left\{H^{\lambda} f\right\}=0, \quad H^{\lambda}\{f\}(s=0, x, y)=f(x, y)
$$

5.4 Group Convolution and Twisted Convolution

To motivate the above formula, we consider the fundamental solution to the (full) unweighted heat equation: $\rho_{s}(x, y, t)$. For a function $f_{0} \in L^{2}\left(\mathbb{C}^{n} \times \mathbb{R}^{m}\right)$, and $g=$ $(z, t) \in \mathbb{C}^{n} \times \mathbb{R}^{m}$, define

$$
\begin{equation*}
H\left\{f_{0}\right\}(s, g)=\left(\rho_{s} * f_{0}\right)(g)=\int_{\tilde{g}} \rho_{s}\left(g[\tilde{g}]^{-1}\right) f_{0}(\tilde{g}) d \tilde{g} \tag{21}
\end{equation*}
$$

where $*$ is the group convolution and $g[\tilde{g}]^{-1}$ is the group multiplication of g by the inverse of \tilde{g}. If X is a right invariant vector field, then

$$
X H\left\{f_{0}\right\}(s, g)=\int_{\tilde{g}}\left(X \rho_{s}\right)\left(g[\tilde{g}]^{-1}\right) f_{0}(\tilde{g}) d \tilde{g}
$$

Since \square_{b} is composed of right invariant vector fields and ρ_{s} satisfies the \square_{b}-heat equation, we therefore have

$$
\left(\partial_{s}+\square_{b}\right)\left\{H\left(f_{0}\right)\right\}=0 .
$$

In addition, the following initial condition holds:

$$
H\left\{f_{0}\right\}(s=0, g)=\int_{\tilde{g}} \rho_{s=0}\left(g[\tilde{g}]^{-1}\right) f_{0}(\tilde{g}) d \tilde{g}=f_{0}(g)
$$

since $\rho_{s=0}(z, t)$ is the Dirac delta function centered at $(z, t)=0$.

Note that $H^{\lambda}\{f\}(s, x, y)=(2 \pi)^{m / 2} H\{f\}(s, x, y, \widehat{\lambda})$, which is the partial Fourier transform in the t variable of $H\{f\}(s, x, y, t)$. We will now show the Fourier transform in the t-variable transforms the group convolution to a "twisted convolution", which we now define. Suppose F and G are in $L^{2}\left(\mathbb{C}^{n}\right)$, and $\lambda \in \mathbb{R}^{m}$. Following Stein [18], p. 552, we let

$$
\left(F *_{\lambda} G\right)(z)=\int_{\tilde{z} \in \mathbb{C}^{n}} F(z-\tilde{z}) G(\tilde{z}) e^{-2 i \lambda \cdot \operatorname{Im} \phi(z, \tilde{z})} d \tilde{z}
$$

The arguments in [18], p. 552, with $\langle z, \tilde{z}\rangle$ replaced by $2 \operatorname{Im} \phi(z, \tilde{z})$, show the following: if $F_{0}, G_{0} \in L^{2}\left(\mathbb{C}^{n} \times \mathbb{R}^{m}\right)$, then

$$
\left(F_{0} * G_{0}\right)(z, \widehat{\lambda})=(2 \pi)^{m / 2}\left(F_{0}(\cdot, \widehat{\lambda}) *_{\lambda} G_{0}(\cdot, \widehat{\lambda})\right)(z)
$$

Now suppose $f \in L^{2}\left(\mathbb{C}^{n}\right)$ is given and let $f_{0}(z, t)=(2 \pi)^{m / 2} f(z) \delta_{0}(t)$, so that $f_{0}(z, \widehat{\lambda})=f(z)$. With H^{λ} given as in (20), we can take the partial Fourier transform in t of (21) and use the above relationship to obtain

$$
\begin{aligned}
H^{\lambda}(f)(s, z) & =\int_{\tilde{z} \in \mathbb{C}^{n}} H^{\lambda}(s, z, \tilde{z}) f(\tilde{z}) d \tilde{z} \\
& =\int_{\tilde{z} \in \mathbb{R}^{n}, \tilde{y} \in \mathbb{R}^{n}}(2 \pi)^{m / 2} \rho_{s}(x-\tilde{x}, y-\tilde{y}, \widehat{\lambda}) f(\tilde{x}, \tilde{y}) e^{-2 i \lambda \cdot \operatorname{Im} \phi(z, \tilde{z})} d \tilde{x} d \tilde{y} \\
& =(2 \pi)^{m / 2}\left(\rho_{s}(\cdot, \widehat{\lambda}) *_{\lambda} f_{0}(\cdot, \widehat{\lambda})\right)(z) \\
& =\left(\rho_{s} * f_{0}\right)(z, \widehat{\lambda}) \\
& =H\left(f_{0}\right)(s, z, \widehat{\lambda}) .
\end{aligned}
$$

Since $H\left(f_{0}\right)$ satisfies the \square_{b}-heat equation, $H\left(f_{0}\right)(s, z, \widehat{\lambda})=H^{\lambda}(f)(s, z)$ satisfies the weighted heat equation, i.e.,

$$
\left(\partial_{s}+\square_{b}^{\lambda}\right)\left\{H^{\lambda}(f)\right\}=0
$$

The initial condition $H^{\lambda}(f)(s=0, z)=f(z)$ is also satisfied because

$$
\begin{aligned}
H^{\lambda}(f)(s=0, z) & =H\left(f_{0}\right)(s=0, z, \widehat{\lambda}) \\
& =f_{0}(z, \widehat{\lambda}) \\
& =f(z)
\end{aligned}
$$

References

1. Berndtsson, B.: Weighted estimates for $\bar{\partial}$ in domains in \mathbb{C}. Duke Math. J. 66(2), 239-255 (1992)
2. Beals, R., Gaveau, B., Greiner, P.: The Green function of model step two hypoelliptic operators and the analysis of certain tangential Cauchy Riemann complexes. Adv. Math. 121(2), 288-345 (1996)
3. Beals, R., Gaveau, B., Greiner, P.C.: Hamilton-Jacobi theory and the heat kernel on Heisenberg groups. J. Math. Pures Appl. (9) 79(7), 633-689 (2000)
4. Boggess, A., Raich, A.: A simplified calculation for the fundamental solution to the heat equation on the Heisenberg group. Proc. Am. Math. Soc. 137(3), 937-944 (2009)
5. Calin, O., Chang, D.-C., Tie, J.: Fundamental solutions for Hermite and subelliptic operators. J. Anal. Math. 100, 223-248 (2006)
6. Christ, M.: On the $\bar{\partial}$ equation in weighted L^{2} norms in \mathbb{C}^{1}. J. Geom. Anal. 1(3), 193-230 (1991)
7. Folland, G.B.: Harmonic Analysis in Phase Space. Ann. of Math. Stud., vol. 122. Princeton University Press, Princeton (1989)
8. Fornæss, J.E., Sibony, N.: On L^{p} estimates for $\bar{\partial}$. In: Several Complex Variables and Complex Geometry, Santa Cruz, CA, 1989. Proc. Sympos. Pure Math., vol. 52, pp. 129-163. American Mathematical Society, Providence (1991). Part 3
9. Haslinger, F.: Szegö kernels for certain unbounded domains in \mathbb{C}^{2}. Rev. Roum. Math. Pures Appl. 39, 939-950 (1994)
10. Haslinger, F.: Singularities of the Szegö kernel for certain weakly pseudoconvex domains in C^{2}. J. Funct. Anal. 129, 406-427 (1995)
11. Haslinger, F.: Bergman and Hardy spaces on model domains. Ill. J. Math. 42, 458-469 (1998)
12. Hulanicki, A.: The distribution of energy in the Brownian motion in the Gaussian field and analytic hypoellipticity of certain subelliptic operators on the Heisenberg group. Studia Math. 56, 165-173 (1976)
13. Peloso, M.M., Ricci, F.: Analysis of the Kohn Laplacian on quadratic CR manifolds. J. Funct. Anal. 2003(2), 321-355 (2003)
14. Raich, A.: Heat equations and the weighted $\bar{\partial}$-problem. Submitted. arXiv:0704.2768
15. Raich, A.: Heat equations in $\mathbb{R} \times \mathbb{C}$. J. Funct. Anal. 240(1), 1-35 (2006)
16. Raich, A.: One-parameter families of operators in \mathbb{C}. J. Geom. Anal. 16(2), 353-374 (2006)
17. Raich, A.: Pointwise estimates of relative fundamental solutions for heat equations in $\mathbb{R} \times \mathbb{C}$. Math. Z. 256, 193-220 (2007)
18. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton (1993)
19. Thangavelu, S.: Lectures on Hermite and Laguerre Expansions. Mathematical Notes, vol. 42. Princeton University Press, Princeton (1993)
20. Yang, Q., Zhu, F.: The heat kernel on h-type groups. Proc. Am. Math. Soc. 136(4), 1457-1464 (2008)
