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Abstract

Let p : C → R be a subharmonic, nonharmonic polynomial and τ ∈ R a parameter.

Define Z̄τp = ∂
∂z̄

+ τ ∂p
∂z̄

, a closed, densely-defined operator on L2(C). If �τp = Z̄τpZ̄
∗
τp

and �̃τp = Z̄∗τpZ̄τp, the goal of this thesis is to solve the heat equations: ∂u
∂s

+ �τpu = 0,

u(0, z) = f(z) and ∂ũ
∂s

+ �τpũ = 0, ũ(0, z) = f̃(z) on (0,∞) × C. The solutions come

via the heat semigroups e−s�τp and e−s
e�τp , and we show that u(s, z) = e−s�τp [f ](z) =∫

CHτp(s, z, w)f(w) dw and ũ(s, z) = e−s
e�τp [f̃ ](z) =

∫
C H̃τp(s, z, w)f̃(w) dw. We prove

that Hτp, H̃τp are C∞ off the diagonal {(s, z, w) : s = 0 and z = w} and that Hτp and its

derivatives have exponential decay. We develop classes of one-parameter families (OPF)

of operators on C∞
c (C) which are instrumental in proving both the regularity of Hτp

and H̃τp and the decay of Hτp. We prove that an order 0 OPF operator extends to a

bounded operator from Lq(C) to itself, 1 < q < ∞, with a bound that depends on q

and the degree of p but not on τ or the coefficients of p. Last, we show that there is

a one-to-one correspondence given by the partial Fourier transform in τ between OPF

operators of order m ≤ 2 and nonisotropic smoothing (NIS) operators of order m ≤ 2

on polynomial model domains in C2.
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Chapter 1

Introduction

1.1 Introduction

Let p : C → R be a subharmonic, nonharmonic polynomial. If z = x1 + ix2 and

∂
∂z̄

= 1
2

(
∂
∂x1

+ i ∂
∂x2

)
, define Z̄p to be the operator

Z̄p =
∂

∂z̄
+
∂p

∂z̄
,

and let Zp = −(Z̄p)
∗ = ∂

∂z
− ∂p

∂z
be the negative of the formal L2-adjoint of Z̄p. If

we let �p = −Z̄pZp and �̃p = −ZpZ̄p, then the research in this thesis is focused on

understanding the heat equations:
∂u

∂s
+ �pu = 0

u(0, z) = f(z)

(1.1)

and 
∂ũ

∂s
+ �̃pũ = 0

ũ(0, z) = f̃(z).

(1.2)

Our goal is show that the solutions u and ũ of (1.1) and (1.2), respectively, can be

realized as integrals against distributional kernels. Specifically, we want a solution of
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(1.1) of the form:

u(s, z) =

∫
C
H(s, z, w)f(w) dw

and a solution of (1.2) of the form:

ũ(s, z) =

∫
C
H̃(s, z, w)f̃(w) dw.

We are interested in showing that H and H̃ are smooth (on an appropriate region) and

establishing pointwise estimates for the kernels.

The operators Z̄p and Zp arise is two natural ways. One is through the study of ∂̄b on

a class of weakly pseudoconvex domains of finite type called polynomial model domains,

and the other is through the study of the weighted ∂̄-equation in C. In both cases, Z̄p

occurs during an investigation of the ∂̄-problem on domains Ω ⊂ Cn, which is where we

begin our discussion.

1.2 ∂̄-equation on Ω

Let Ω ⊂ Cn be an open set. Given a function u : Ω → C, the Cauchy-Riemann operator

∂̄ acting on u is defined by

∂̄u =
n∑
j=1

∂u

∂z̄j
dz̄j.

In complex analysis, an important problem analysis is to solve the inhomogeneous

Cauchy-Riemann equations on Ω. This means given f(z) =
∑n

j=1 aj(z) dz̄j, finding

a function u so that ∂̄u = f . This is a difficult problem because the system is over-

determined, i.e. there are more equations than unknowns. One requirement to solve

∂̄u = f is the compatability condition ∂̄f = 0 where ∂̄f =
∑n

j=1 ∂̄aj(z) ∧ dz̄j. In
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general, when trying to solve any partial differential equation or system of partial dif-

ferential equations, it is important to determine existence and uniqueness of solutions.

On Ω, there exist functions h so that ∂̄h = 0. Such function are called holomorphic,

and the study of holomorphic functions is a major focus of complex analysis. The ex-

istence of holomorphic functions means that there is no uniqueness for the ∂̄-problem,

∂̄u = g. However, this does not mean that there is no hope of solving the ∂̄-problem on

Ω. One must ask a question which, if there is an answer, guarantees uniqueness. One

possibility is to find the L2-minimizing solution, and this is the approach many authors

take. The goal becomes not just solving a particular PDE but solving with “estimates”.

This means understanding the mapping properties of solutions, i.e. understanding the

smoothness or size of the solution relative to the size of the data or initial condition.

There are a number of classes of domains on which the ∂̄-problem is studied, and

the class on which we work is the class of is pseudoconvex domains. One reason pseu-

doconvex domains are studied is that if Ω is pseudoconvex, there exists a holomor-

phic function on Ω which cannot be holomorphically extended to a larger domain. In

a sense, pseudoconvex domains form the maximal domains in Cn on which holomor-

phic functions are defined. Kohn and Hörmander pioneered the early work on the

∂̄-problem [Koh61, Koh63, Koh64, Hör65], and Hörmander’s methods on pseudocon-

vex domains, now classical in the subject, rely on proving estimates in weighted L2-

spaces [Hör90, Kra01]. This motivates studying the ∂̄-problem on the weighted space

L2(C, e−2p).
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1.3 ∂̄ on Weighted Lq Spaces in C

Let p be subharmonic but not harmonic. On C, ∂̄u = ∂u
∂z̄
dz̄. Since there is only one

term in the sum, we identify ∂̄u with ∂u
∂z̄

and omit the dz̄. When Ω ⊂ C is bounded,

Hörmander shows that there is a solution u to

∂̄u = f (1.3)

in L2(Ω, e−2p) satisfying the estimate:∫
Ω

|u|2e−2p dz ≤ (diam Ω)2

∫
Ω

|f |2e−2p dz.

If diam Ω < 1, Fornæss and Sibony [FS91] generalize this estimate to Lq, 1 < q ≤ 2, and

prove that (1.3) has a solution satisfying:(∫
Ω

|u|qe−2p dz

) 1
q

≤ C

p− 1

(∫
Ω

|f |qe−2p dz

) 1
q

.

They also show that the estimate fails if q > 2. Berndtsson [Ber92] builds on the work

of Fornæss and Sibony by showing an Lq-L1 result. He shows that if diam Ω < 1 and

1 ≤ q < 2, then (1.3) has a solution so that(∫
Ω

(|u|2e−p)q dz
) 1

q

≤ Cp

∫
Ω

|f |e−p dz.

Berndtsson also proves a weighted L∞-Lq estimate when q > 2, but the estimate is more

complicated to write down.

In [Chr91a], Christ recognizes that it is possible to study the ∂̄-problem in L2(C, e−2p)

by working with a related operator in the unweighted space L2(C). If ∂̄ũ = f̃ and both

ũ = epu and f̃ = epf are in L2(C, e−2p), then

∂(epu)

∂z̄
= epf =⇒ e−p

∂

∂z̄
epu = f.
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However, e−p ∂
∂z̄
epu = Z̄pu, so the ∂̄-problem on L2(C, e−2p) is equivalent to the Z̄p-

problem, Z̄pu = f , on L2(C). Christ solves the Z̄p-equation Z̄pu = f . In L2(C), the

null space of Z̄p is large, so Christ finds the the L2-minimizing solution. Christ proves

that Gp = �−1
p is a well-defined, bounded, linear operator on L2(C). Rp = ZpGp is

the relative fundamental solution of Z̄p, i.e. the operator Rp satisfies Z̄pRf = (I − Sp)f

where Sp is the projection of L2(C) onto the ker Z̄p. It is also the L2-minimizing solution

since Range(Zp) = (ker Z̄p)
⊥. He shows that Gp and Rp can be realized as fractional

integral operators with kernels Gp(z, w) and Rp(z, w) respectively. This means that

Gp[f ](z) =

∫
C
Gp(z, w)f(w) dw

and

Rp[f ](z) =

∫
C
Rp(z, w)f(w) dw

where Gp(z, w) and Rp(z, w) are distributions with integrable singularities on {z = w}.

Christ obtains pointwise upper bounds on both the blow up of the singularities on the

diagonal {z = w} and the decay at infinity. A difficulty in analyzing �p is that it is hard

to solve �pu = f directly. Instead, Christ establishes good local L2 decay estimates for

solutions and proves a local L∞-L2 type bound on local solutions of �pu = 0. Specifically,

for the local L∞-L2 type bound, he shows that if �pu = 0 on D = D(z0, r), then there

exists N , C so that ‖u‖L∞(D)+r‖Zpu‖L∞(D) ≤ C(1+ν(D))N(r−1‖u‖L2(2D)+‖Zpu‖L2(2D))

where dν = 4p dz.

In [Ber96], Berndtsson also solves Z̄pu = f for p subharmonic, but Berndtsson solves

the problem on L2(Ω) where Ω ⊂ C is a smoothly bounded domain. Like Christ, he

expresses his L2-minimizing solution via a fractional integral operator, though unlike
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Christ, his analysis is derived through functional analysis and a careful study of Kato’s

inequality:

4|α| ≥ 4p|α| − 4|�pα|

for α ∈ C2(Ω). If RΩ
p is the relative fundamental solution for Z̄p on Ω with kernel

RΩ
p (z, ζ), and RΩ

0 is the relative fundamental solution for ∂̄ (in L2(C)) with kernel

RΩ
0 (z, ζ), Berndtsson proves

|RΩ
p (z, ζ)| ≤ |RΩ

0 (z, ζ)|

for z ∈ ∂Ω. He also shows if p and ρ are subharmonic, Ω = {z : ρ(z) < 0}, and
∣∣∂ρ
∂z

∣∣ 6= 0

on ∂Ω, then if |f | ≤ (−ρ)4p and u(z) = RΩ
p [f ](z),

|u| ≤
∣∣∣∣∂ρ∂z

∣∣∣∣
on ∂Ω.

1.4 Pseudoconvex Domains and ∂̄b

Now that we have established the connection between the weighted ∂̄-equation in C and

the operators Z̄p and Zp, we now turn to the study of pseudoconvex domains and the

∂̄b-problem, and their connection with the operators Z̄p and Zp.

A defining function ρ for Ω is a function ρ : Cn → Ω so that Ω = {z ∈ Cn :

ρ(z) < 0 and ∇ρ 6= 0 when ρ = 0}. We say that ∂Ω is Ck if ρ is Ck on a neigh-

borhood of ∂Ω. When ∂Ω is C2, we can write down a geometric condition on ∂Ω

to describe pseudoconvexity. Given z ∈ ∂Ω, the real tangent space at z is Tz(∂Ω) =

{ξ = (x1, . . . , x2n) ∈ R2n : ξ · ∇ρ = 0}. We identify R2n ∼= Cn with the identi-

fication ξ = (x1 + ixn+1, . . . , xn + ix2n) = (ξ1, . . . , ξn). Under this identification, if
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∂
∂ξj

= 1
2

(
∂
∂xj

− i ∂
∂xn+j

)
, then

ξ · ∇ρ = 0 ⇐⇒ Re

(
n∑
j=1

∂ρ

∂ξj
ξj

)
= 0,

and it follows that the maximal complex tangent space at z is

TC
z (∂Ω) =

{
ξ ∈ Cn :

n∑
j=1

∂ρ

∂ξj
ξj = 0

}
.

The complex Hession of ρ, ( ∂2ρ
∂zi∂z̄j

), is called the Levi form of ρ, and pseudoconvexity

is equivalent to the nonnegativity of the Levi form on TC
z (∂Ω). One comment about

“the” Levi form is that different defining functions for Ω will give different Levi forms.

However, the signs of the eigenvalues of the Levi form are invariant under biholomorphic

changes of coordinates.

One reason having a characterization of pseudoconvexity directly in terms the bound-

ary data is desirable is that the geometry of the boundary determines whether or not

holomorphic functions extend to the boundary and in what sense they extend. We know

there exist holomorphic functions on Ω which do not extend holomorphically across ∂Ω,

but it may be possible to extend the function to a space of distributions or a func-

tion space defined on ∂Ω. ∂Ω is a submanifold of Cn of real codimension 1. A related

problem to studying the extension of holomorphic functions to ∂Ω is to take a smooth

submanifold M ⊂ Cn and study the equations that holomorphic functions must satisfy

when restricted to M . Phrased differently, if we are given a function on M , we would

like to know if that function can be the restriction of a holomorphic function. When

n ≥ 2, these questions are naturally answered in the language of complex vector fields.

It is standard in the subject to identify the vector (a1, . . . , a2n) ∈ R2n with the vector∑2n
j=1 aj

∂
∂xj

= a · ∇. Let U ⊂ R2n be an open set, and if z ∈ U , let TzU be the space
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of tangent vectors at U . We define the tangent bundle of U as T (U) =
⋃
z∈U Tz(U)

and a vector field on U as a map X : U → T (U) defined by X =
∑2n

j=1 aj(z)
∂
∂xj

where

aj ∈ C∞(U) and R-valued. For our purposes, we would like to allow aj(z) to be C-valued,

so we define the complexified tangent bundle of U by T (U)⊗ C. A complex vector field

is a map X : U → T (U)⊗ C where X =
∑2n

j=1 aj(z)
∂
∂xj

and aj ∈ C∞(U) are C-valued.

For the rest of the exposition, we will assume that all vector fields are complex vector

fields. A vector field X which satisfies Xρ = 0 is called a tangential vector field. The

name tangential follows from the equivalence Xρ = 0 if and only if X ⊥ ∇ρ. Earlier, we

discussed the complex structure on Cn, and if we let ∂
∂z̄j

= 1
2

(
∂
∂x̄j

+ ∂
∂x̄n+j

)
, then there

is the decomposition T (U)⊗ C = T (1,0)U ⊕ T (0,1)U , where

T (1,0)U =

{
L ∈ T (M)⊗ C : L =

n∑
j=1

aj(z)
∂

∂zj

}
,

and

T (0,1)U = T (1,0)U =

{
L̄ ∈ T (M)⊗ C : L̄ =

n∑
j=1

bj(z)
∂

∂z̄j

}
.

Note that holomorphic functions on U are exactly the functions annihilated by vector

fields of the form L̄ =
∑n

j=1 bj(z)
∂
∂z̄j

. Such vector fields are called antiholomorphic vector

fields.

To apply a vector field X defined on Ω to a function g on M , we extend g to G on

Ω and define Xg = XG
∣∣
M

. One obvious problem with this idea is that it is not clear

whether Xg is well-defined. It turns out that Xg is well-defined if and only if Xρ = 0.

We can now answer questions posed about holomorphic functions on M . The linearly

independent set { ∂
∂z̄1
, . . . , ∂

∂z̄n
} generates the module of antiholomorphic vector fields on

Ω over C∞(Ω). We denote the dual of the tangent vector ∂
∂z̄j

by the (0, 1)-form dz̄j. A
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(0, 1)-form is a differential form of the form α =
∑n

j=1 αj(z) dz̄j where αj ∈ C∞(Ω). We

know the condition L̄ρ = 0 is necessary to define L̄g, so locally there is a family of (n−1)

linearly independent antiholomorphic tangential vector fields L̄j, 1 ≤ j ≤ n − 1. For

z ∈M , {L̄1(z), . . . , L̄n−1(z)} forms a basis of the tangential antiholomorphic vector fields

in TC
z (M), and let {dω̄1(z), . . . , dω̄n−1(z)} be the dual basis of (0, 1)-forms. Analogously

to the ∂̄-operator on Ω, we define the boundary Cauchy-Riemann operator ∂̄b on the

function g defined on M as

∂̄bg =
n−1∑
j=1

L̄j[g] dω̄j.

If ∂̄bg = 0 and Ω satisfies suitable hypotheses, we can extend g holomorphically to Ω.

We are interested in questions on M = ∂Ω ⊂ C2 related to the ∂̄b-problem, ∂̄bg = f ,

when Ω is pseudoconvex. The geometry of M plays a vital role in the tractibility of

solving the ∂̄b-problem. We can understand the geometry of M by understanding the

ρ and its Levi form. TC
z (M) = {(u1, u2) ∈ C2 : ∂ρ

∂z1
u1 + ∂ρ

∂z2
u2 = 0}, a one complex

dimensional space with basis vector (− ∂ρ
∂z2
, ∂ρ

∂z1
). Thus, if λ, µ ∈ C are nonzero, then

λ(− ∂ρ
∂z2
, ∂ρ

∂z1
) and µ(− ∂ρ

∂z2
, ∂ρ

∂z1
) are arbitrary nonzero vectors in TC

z (M), and the Levi

form at z is written

µ̄λ

(
−∂ρ(z)

∂z2

∂ρ(z)

∂z1

)
∂2ρ(z)

∂z1∂z̄1

∂2ρ(z)

∂z1∂z̄2

∂2ρ(z)

∂z2∂z̄1

∂2ρ(z)

∂z2∂z̄2



−∂ρ(z)

∂z̄2

∂ρ(z)

∂z̄1

 = µ̄λL(z).

If L(z) > 0, the Levi form at z is positive definite, and we say that the Levi form is strictly

pseudoconvex at z. If L(z) = 0, then the Levi form is nonnegative at z, and we say that

the Levi form is weakly pseudoconvex at z. At z, if m is the lowest order derivative of

L that is nonzero, then z is a point of type m. If M has points of type m and lower, M

is said to be of finite type. In C2, there has been progress on the ∂̄b problem when Ω is
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bounded and strictly pseudoconvex. In particular, there has been analysis both of the

Szegö projection S : L2(M) → ker ∂̄b and of the relative fundamental solution R of ∂̄b,

i.e. the operator R satisfies ∂̄bRf = (I − S)f . Similarly to Christ’s analysis of Z̄p, ∂̄b is

analyzed via the operator �b = −∂̄∗b ∂̄b which has relative fundamental solution G. To

discuss the C2 results, it is helpful to introduce a class of operators called nonisotropic

smoothing (NIS) operators defined in [NRSW89]. Given a manifold N ⊂ Rn, an NIS

operator T acting on functions ϕ ∈ C∞
c (N) can be written as

T [ϕ](α) =

∫
N

K(α, β)ϕ(β) dβ

for some distributional kernel K(α, β) that is smooth off of the diagonal α = β. Also, the

behavior of T is governed by a size condition onK and a cancellation condition governing

the size of ‖T [ϕ]‖L∞ . The final condition is one that makes NIS operators into an algebra.

NIS operators can be viewed as analogs to Calderòn-Zygmund operators where the size

is governed by a metric defined by the tangential vectors fields instead of the Euclidean

distance. The results about S, R, and G can be summarized as follows: S, R, and G are

NIS operators of orders 0, 1, and 2, respectively. These results are the culmination of the

work of many authors, including Christ [Chr88b, Chr88a, Chr91b, Chr91a], Fefferman

and Kohn [FK88a, FK88b], Kohn [Koh72, Koh85], McNeal [McN89], and Nagel, Rosay,

Stein, and Wainger [NRSW89], See Christ[Chr91c] for a helpful exposition regarding

timeline of the papers and concise statements of the results. See Fefferman [Fef95]

for a discussion of the logic behind the arguments. There has also been progress for a

class of unbounded weakly pseudoconvex domains of finite type called polynomial model

domains [NRSW89]. These are domains of the form

M = {(z1, z2) ∈ C2 : Im z2 = p(z1)}.
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where p is a subharmonic, nonharmonic polynomial. We now restrict our attention to

these domains.

Our focus is on questions related to the ∂̄b-problem on polynomial model domains in

C2. Observe that M ∼= C× R under the isomorphism

(z1, z2) =
(
z, t+ ip(z)

)
7→ (z, t).

On hypersurfaces in C2, the module of tangential, antiholomorphic vector fields over C∞

is spanned by one element. On M , we can take

∂̄b = L̄ dω̄ =

(
∂

∂z̄1

− 2i
∂p

∂z̄1

∂

∂z̄2

)
dω̄.

Because there is only one term, we suppress the dω̄ term and identify ∂̄b with the vector

field L̄. We write write

∂̄b = L̄ =
∂

∂z̄1

− 2i
∂p

∂z̄1

∂

∂z̄2

Under the isomorphism, ∂̄b, defined on M , becomes the vector field (still called L̄ by an

abuse of notation)

L̄ =
∂

∂z̄
− i

∂p

∂z̄

∂

∂t

defined on C × R. There are a number of approaches that one can take to study the

L̄-problem. One is to observe that L̄ is translation invariant in t, and this suggests that

we take a partial Fourier transform in t. If f(z, t) is a suitably nice function on C× R,

the partial Fourier transform of f is

F (z, τ) =

∫
R
e−itτf(z, t) dt.

Under the partial Fourier transform, the vector field L̄ becomes Z̄τp = ∂
∂z̄

+ τ ∂p
∂z̄

, which

we regard as a one-parameter family of differential operators on C indexed by τ . As
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discussed earlier, there is a strong connection between the operators Z̄τp and the ∂̄-

equation on weighted L2-spaces in C. Thus, questions about the ∂̄b-complex on M are

intimately connected with the ∂̄-equation on weighted L2-spaces on C.

1.5 �τp-Heat Equations and OPF Operators

Like Christ, we are interested in inverting �τp. To study �τp, Christ’s methods are not

the only ones available. For a different approach to invert �τp, we can look at the heat

semigroup e−s�τp and integrate out s. Formally, u = e−s�τp [f ] solves the heat equation
∂u

∂s
+ �τpu = 0

u(0, z) = f(z)

(1.4)

and inverts �τp since ∫ ∞

0

e−s�τp ds = �−1
τp . (1.5)

Nagel and Stein [NS01] investigate the heat semigroup e−s�b on M . Their goal is to

use estimates on the heat semigroup onM ∼= C×R to understand �b in a product setting

[NS04]. Nagel and Stein use the spectral theorem to define e−s�b as a distributional kernel

and prove that it is a contraction on L2(C×R). Next, they use the Riesz Representation

Theorem to justify writing

e−s�b [f ](α) =

∫
C×R

H(s, α, β)f(β) dβ,

where H is a distributional kernel with a nonintegrable singularity when s = 0 and p = q.

They then show the heat kernel H(s, α, β) and its derivatives are actually smooth off of

the diagonal and obtain estimates on H(s, α, β) and its derivatives. It turns out that an
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analog to (1.5) cannot hold because ker �b 6= {0}, but a substitute formula works; if S

is the Szegö projection, i.e. the projection of L2(M) onto ker �b, then∫ ∞

0

e−s�b(I − S) ds = �−1
b

where �−1
b stands for the L2-minimizing inverse operator.

In their argument to prove smoothness, NIS operators play an instrumental role.

The spectral theorem gives control of certain derivatives but not all derivatives. Here,

derivative means the operator L̄ or L̄∗. Roughly speaking, if α is a multiindex and Y α

is a product of |α| operators of the form Y = L̄ or L̄∗, then results from NIS operator

theory allows Nagel and Stein to write

Y α = A�
|α|
2
b (1.6)

where A is an NIS operator that is well controlled. Switching from Y α to A�
|α|
2
b is anal-

ogous to using the Riesz transform to switch from arbitrary derivatives to powers of the

Laplacian. This is an extremely usefal fact because the spectral theorem contains the

estimate ‖�j
bϕ‖L2(C×R) . s−j‖ϕ‖L2(C×R), and (1.6) allows the estimate to be extended

to ‖Y αϕ‖L2(C×R) . s−|α|/2‖ϕ‖L2(C×R). The size estimate that Nagel and Stein prove is

shown using a scaling argument. The structure of �b allows a reduction from finding

pointwise estimates of H(s, α, β) at arbitrary points α and β from an arbitrary polyno-

mial model domain to finding pointwise estimates of kernels H(s, 0, β) where β and s

are a unit distance from 0, and the polynomial which defines M is from a compact set

of normalized polynomials.

A motivation for this thesis is an attempt to solve the problem of Christ, i.e. in-

vert �τp and find pointwise estimates on Gτp(z, ζ) and its derivatives, using the heat

semigroup e−s�τp method motivated by Nagel and Stein. In addition, understanding
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the heat equation (1.4) is an interesting question in its own right. There are a number

of obstructions to using the techniques of Nagel and Stein in this setting. First, there

is no analog to NIS operators, so we define classes of one-parameter families (OPF) of

operators to play an analogous role to NIS operators. Second, due to the partial Fourier

transform, it appears that we cannot scale in the transformed variable. Losing the abil-

ity to scale in any variable dooms the scaling argument of Nagel and Stein. We find

other techniques which allow us to bound the heat kernel and its derivatives with better

decay than the scaling argument would have given.

To define the OPF operators, the operators of Christ form the starting point. We

define classes of OPF operators that act on C∞
c (C) based on the operatrs Gp and Rp.

Similarly to both [NRSW89] and [NS01], we spend considerable effort exploring the

properties of our new class of operators. Since OPF operators were to be analogs of

NIS operators on polynomial model domains, we knew that OPF operators as a class

would have useful properties that individual operators would not. Indeed, the class of

OPF operators is closed under translation, rotation, dilation, and composition. This

enables us to use a scaling argument to help prove the decay of the heat kernel. As with

NIS operators, another useful property of the OPF operators is if α is a multiindex and

Y = Zτp or Z̄τp, then, roughly speaking, we can write Y α = Aτ�
|α|
2
τp where Aτ is a well

controlled OPF operator.

To motivate the definition of an OPF operator, it is important to recall that OPF

operators were designed to be analogs of NIS operators. In fact, one of the original mo-

tivations for defining OPF operators was to study how an NIS operator on a polynomial

model domain in C2 behaves under a partial Fourier transform.

Qualitatively, a partial Fourier transform on an NIS operator will not change the
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fact that there is an integral kernel, size conditions, and cancellation conditions. Any

reasonable definition of an OPF operator will have to have a size and cancellation condi-

tion and an integral kernel. Specifically, given a subharmonic, nonharmonic polynomial

p, a one-parameter family of operators Tτ of order m ≤ 2 acts on ϕ ∈ C∞
c (C) by

Tτ [ϕ](z) =

∫
C
Kτ (z, w)ϕ(w) dw

whereKτ is a distributional kernel that is C∞ away from the diagonal {z = w}×{τ = 0}.

If (Yτp)
J is a product of Z̄τp and Zτp of length |J | = `, there exists a constant C`,k so

that there is the size condition

∣∣Y J
τpKτ (z, w)

∣∣ ≤ C`,k
|z − w|2−m−`

τ kΛ(z, |w − z|)k
if



m < 2

m = 2, k ≥ 1

m = 2, |w − z| > µ(z, 1
τ
)

If m = 2 and |w − z| ≤ µ(z, 1
τ
),

|Kτ (z, w)| ≤ C log

(
2µ(z, 1

τ
)

|w − z|

)
.

Also, if ϕ ∈ C∞
c (D(z0, δ)), we have the cancellation condition:

sup
z∈C

∣∣∣∣∫
C
(Yτp)

JKτ (z, w)ϕ(w) dw

∣∣∣∣ ≤ C`,n,k
δm−`

τ kΛ(z, δ)k
sup
w∈C

∑
|I|≤N`

δ|I|
∣∣(Xτp)

Iϕ(w)
∣∣ .

Λ(z, δ) and µ(z, δ) are geometric objects from the Carnot-Carathéodory geometry de-

veloped by Nagel, Stein, and Wainger [NSW85, Nag86]. The functions also arise in

studying magnetic Schrödinger operators with electric potentials [She96, She99, Kur00].

The size and cancellation conditions form the heart of the definition. They allow us

to prove:
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Theorem 1.1. If Tτ is an OPF operator of order 0, then Tτ , T
∗
τ are bounded operators

from Lq(C) to Lq(C), 1 < q <∞, with a constant independent of τ but depending on q.

Also, the classes of OPF operators fufill the promise of being an analog to NIS

operators. They are actually a tool with which NIS operators can be studied. We have

the theorem:

Theorem 1.2. Given a subharmonic, nonharmonic polynomial p : C → R, there is a

one-to-one correspondence between OPF operators of order m ≤ 2 with respect to p and

NIS operators of order m ≤ 2 on the polynomial model domain Mp = {(z1, z2) ∈ C2 :

Im z2 = p(z1)}. The correspondence is given by a partial Fourier transform in Re z2.

Now that we have introduced OPF operators and discussed two results about the

families of operators, we are ready to analyze �τp and the heat operator e−s�τp . Studying

�τp = −Z̄τpZτp instead of L̄L has two advantages. The first is that Z̄τpZτp is elliptic,

and the second is that we can express 2�τp = 1
2
(−i∇− a)2 + V , a Schrödinger operator

with magnetic potential a and electric potential V . These facts allow us to use a wealth

of results unavailable in analyzing L̄L.

Our analysis comes in two steps. First, we show that e−s�τp is an integral operator

with kernel Hτp(s, z, w) that is smooth away from {(s, z, w) : z = w and s = 0}. To do

this, we use the ideas of [NS01] to develop properties of OPF operators. One essential

result establishes the commutativity of Z̄τp and Zτp with the class of order m families.

From there, still following [NS01], we use the spectral theorem and L2-methods to prove

smoothness ofHτp(s, z, w). Being able to work with OPF operators is critical in the proof

because of the ability to change from arbitrary products of Z̄τp and Zτp to powers of �τp

composed with order 0 operators. Similarly to NIS operators, the spectral theorem gives
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the estimate ‖�j
τpe

−s�τp [ϕ]‖L2(C) . s−j‖ϕ‖L2(C), and being able to write Xα = Aτ�
|α|/2
τp

where Aτ is a well controlled OPF operator means we have the estimate

‖Xαe−s�τp [ϕ]‖L2(C) . s−j‖ϕ‖L2(C). (1.7)

The idea of the proof is to interpret the spectral theorem on the kernel side, that is,

understand the implications of the spectral theorem on Hτp(s, z, w). From (1.7), we see

thatXαe−s�τp [ϕ] ∈ L2(C) for all α. This allows us to prove that for a fixed s, Hτp(s, z, w)

and its derivatives are also in L2. A Sobolev embedding theorem then implies that Hτp

is C∞.

The second step of our analysis is to prove pointwise estimates on Hτp(s, z, w) and

its derivatives. We show:

Theorem 1.3. Let n ≥ 0 and Y α be a product of |α| operators Y = Z̄τp or Zτp if acting

in z and (Zτp) or (Z̄τp) if acting in w. There exists constants c1, c2, c3 > 0 so that if

τ > 0, ∣∣∣∣ ∂n∂snY αHτp(s, z, w)

∣∣∣∣ ≤ c1
1

sn+ 1
2
|α|+1

e−c2
|z−w|2

s e
−c3 s

µ(z, 1
τ )2 .

The estimates are shown in two stages. In the first stage, if z = x1 + ix2, similarly

to Berndtsson [Ber96] we write 2�τp = 1
2
(−i∇− a)2 + V where

a(z) = τ


− ∂p

∂x2

∂p

∂x1

 and V (z) =
1

2
τ4p(z).

We use the Feynman-Kac-Itô formula [Sim79] to show Gaussian decay for Hτp(s, z, w).

To finish the estimate on |Hτp(s, z, w)|, we scale to normalize the polynomial p, prove an

L2-“energy” inequality, and finish the argument with Grönwall’s inequality and e−s�τp
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semigroup properties. We show the estimate on a compact class of polynomials of degree

2n and scale the result to obtain the estimates in the general case.

The second stage of the estimation is to prove pointwise bounds on the derivatives

∂n

∂snU
αHτp(s, z, w). The idea is to prove a local L2-bound for ∂n

∂snU
αHτp(s, z, w) and

its derivatives and pass to a local L∞-bound using either a Sobolev embedding-type

result, Theorem 3.12 or the subsolution estimation from Kurata [Kur00], Lemma A.1.

The local L2-bound uses an integration by parts argument, and the ability to change

arbitrary derivatives into derivatives controlled by the spectral theorem is critical.

1.6 Conclusion and Future Directions

Kurata studied heat kernels in Rn for Schrödinger operators of the form L = (−i∇ −

a)2 + V where a ∈ C1 and V ∈ Lqloc(Rn), V ≥ 0. His conditions on a and V are more

general than what we consider, and he can only prove continuity of the heat kernel. He

shows the bound |Hτp(s, z, w)| ≤ C
s
e−c2

|z−w|2
s e

−c3
„

s

µ(z, 1
τ )2

«1/2m

, a weaker result than what

we have shown. The lack of structure of L prevents the technique of Theorem 1.3 from

applying to Kurata’s more general operators.

By integrating in s, the pointwise estimates on Hτp(s, z, w) allow us to recover esti-

mates on the fundamental solution of �τp and compare our work to Christ [Chr91a]. If

Gτp(z, w) is the fundamental solution to �τp, we show the decay:
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Corollary 1.4. Let Gτp(z, w) be the fundamental solution for �−1
τp . There exists con-

stants C1, C2 > 0 so that if τ > 0,

|Gτp(z, w)| ≤ C1


log
(

2µ(z, 1
τ
)

|z−w|

)
µ(z, 1

τ
) ≥ |z − w|

e
−C2

|z−w|
µ(z, 1

τ ) µ(z, 1
τ
) ≤ |z − w|

Near the diagonal, our estimates agree with Christ, but far from the diagonal, he

shows the decay e−cρτp(z,w) where ρτp is a metric on C which reflects the geometry of the

measure τ4p and ρτp(z, w) ≥ C |w−z|
µ(z,

1
τ

)
. The advantage to our estimates, however, is that

we can compute them easily since µ and Λ are calculated directly from the coefficients

of τp. ρ(z, w) is difficult to calculate.

In Rn, n ≥ 3, Shen (’99) obtains estimates for the decay of the fundamental solution

of −4+ V , V is a nonnegative Radon measure. Interestly, his estimates are sharp even

though they are higher dimensional versions of Christ’s estimates which are not sharp.

This signifies there is additional structure in the special relationship between a and V

in the magnetic Schrodinger operator �τp which has not been exploited.

Estimates on Hτp(s, z, w) have many applications that we would like to explore.

The first step in this direction is to obtain pointwise estimates for Hτp(s, z, w) and its

derivatives when τ < 0. This is equivalent to finding estimates on H̃τp(s, z, w) when

τ > 0. Unfortunately, the techniques from parabolic operator theory and quantum

mechanics do not seem to work. The difficulty lies in the fact that when we write

2�̃τp = 1
2
(−i∇− ã)2 + Ṽ , Ṽ ≤ 0. Writing �̃τp as a parabolic operator, this means the

0th order term may not be positive. I am in the process of developing methods which

exploit the structure of �τp to overcome these difficulties. Once that is accomplished,

we plan to use our results to prove exponential decay for the heat kernel of [NS01],

an improvement over the rapid decay shown by Nagel and Stein. We also hope to use



20

the OPF operator and heat kernel results to build on the work of [NS03] by proving

pointwise estimates on the heat kernel on decoupled domains in Cn, i.e. domains of the

form M = {(z1, . . . , zn) : Im zn =
∑n−1

j=1 pj(zj)} where pj are nonharmonic, subharmonic

polynomials.
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Chapter 2

One-Parameter Families of

Operators on C

2.1 Notation and Definitions

2.1.1 Notation

Let p be a subharmonic, nonharmonic polynomial of degree 2n. On C × R, we define

the operators

L̄z =
∂

∂z̄
− i

∂p

∂z̄

∂

∂t
L̄w =

∂

∂w̄
+ i

∂p

∂w̄

∂

∂t

Lz =
∂

∂z
+ i

∂p

∂z

∂

∂t
Lw =

∂

∂w
− i

∂p

∂w

∂

∂t
.

If Mp is a polynomial model domain in C2 given by Mp = {(z1, z2) ∈ C2 : Im z2 = p(z1)},

then Mp
∼= C×R and ∂̄b (defined on M) becomes the operator L̄z on C×R. It follows

that −Lz is the Hilbert space adjoint to L̄z in L2(C×R). The translation invariance in

t causes many operators of interest to have a convolution structure in t. A consequence

is that if we have a function f̃
(
(z, t), (w, s)

)
= f(z, w, t − s), we may study f(z, w, t).

By the chain rule, L̄w and Lw are the versions of L̄z and Lz in the w-variable.

We take the partial Fourier transform in t of the operators L̄z, Lz, L̄w, Lw. We let
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the τ be the transform variable of t, and we define the operators

Zτp,z =
∂

∂z
− τ

∂p

∂z
Wτp,w =

∂

∂w
+ τ

∂p

∂w

Z̄τp,z =
∂

∂z̄
+ τ

∂p

∂z̄
W τp,w =

∂

∂w̄
− τ

∂p

∂w̄
.

We think of τ as fixed and the operators Z̄τp,z, Zτp,z, W τp,w, and Wτp,w as acting on

functions defined on C. We will omit the variables z and w from subscripts when the

application is unambiguous. Observe that (Zτp) = W τp and (Z̄τp) = Wτp. We let X1

and X2 denote the “real” and “imaginary” parts of Z, that is,

X1 = Zτp + Z̄τp =
∂

∂x1

+ iτ
∂p

∂x2

X2 = i(Zτp − Z̄τp) =
∂

∂x2

− iτ
∂p

∂x1

.

Analogously to X1 and X2, define

U1 = Wτp +W τp =
∂

∂x1

− iτ
∂p

∂x2

U2 = i(Wτp −W τp) =
∂

∂x2

+ iτ
∂p

∂x1

.

We need to establish notation for adjoints. If T is an operator (either bounded or

closed and densely defined) on a Hilbert space with inner product
(
· , ·
)
, let T ∗ be the

Hilbert space adjoint of T . This means that if f ∈ DomT and g ∈ DomT ∗, then(
Tf, g

)
=
(
f, T ∗g

)
. The Hilbert spaces that arise in this thesis are L2(C), L2(C× R),

and L2(R × C). If U = C, C × R, or R × C and T is an operator acting on C∞
c (U)

or S(U) = {ϕ ∈ C∞(U) : ϕ has rapid decay}, then we denote T# as the adjoint in the

sense of distributions. This means is K is a distribution or a Schwartz distribution, then

〈T#K,ϕ〉 = 〈K,Tϕ〉. Note that if T is not R-valued, T ∗ 6= T#. It follows easily that

Z̄#
τp = −W τp and Z#

τp = −Wτp.
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Notation for Carnot-Carathéodory geometry.

The metric and corresponding balls from the Carnot-Carathéodory geometry on polyno-

mial model domains play an important role in this work. We need the following functions

in order to describe the metric ρ. Let

Λ(z, δ) =
∑
j,k≥1

∣∣azjk∣∣ δj+k (2.1)

where

azjk =
1

j!k!

∂j+kp

∂zj∂z̄k
(z). (2.2)

Define

µ(z, δ) = inf
j,k≥1

|δ|1/j+k

|azjk|1/j+k
, (2.3)

and we see that µ(z, δ) is an approximate inverse to Λ(z, δ). This means that if δ > 0,

µ
(
z,Λ(z, δ)

)
∼ δ and Λ

(
z, µ(z, δ)

)
∼ δ.

We use the notation a . b if a ≤ Cb where C is a constant that may depend on the

dimension 2 and the degree of p. We say that a ∼ b if a . b and b . a.

We also denote the “twist” at w, centered as z by

T (w, z) = −2 Im

(∑
j≥1

1

j!

∂jp

∂zj
(z)(w − z)j

)

= i

(∑
j≥1

1

j!

∂jp

∂zj
(z)(w − z)j −

∑
j≥1

1

j!

∂jp

∂z̄j
(z)(w − z)

j

)
. (2.4)

Given (z, t), (w, s) ∈ C× R, the nonisotropic distance

ρ
(
(z, t), (w, s)

)
= |z − w|+ µ

(
z, t− s+ T (w, z)

)
.

Since ρ
(
(z, t), (w, s)

)
is a function of z, w, and t− s, we define a new function

dNI(z, w, t) = |z − w|+ µ
(
z, t+ T (w, z)

)
. (2.5)
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We will see that dNI(z, w, t) is essentially symmetric in (z, w). The nonisotropic ball

BNI

(
(z, t), δ

)
= {(w, s) : dNI(z, w, t− s) < δ}.

We also define a volume function

VNI
(
(z, t), (w, s)

)
=
∣∣BNI

(
(z, t), dNI(z, w, t−s)

)∣∣ = dNI(z, w, t−s)2Λ
(
z, dNI(z, w, t−s)

)
.

Properties of T (w, z).

Proposition 2.1.

T (w, z) = −T (z, w)

Proof. Since p(z) =
∑

j,k
1
j!k!

∂j+kp
∂zj∂z̄k (w)(z − w)j(z − w)

k
, we have

∂`p

∂z`
(z) =

∑
j≥`
k≥0

j(j − 1) · · · (j − (`− 1))

j!k!

∂j+kp

∂zj∂z̄k
(w)(z − w)j−`(z − w)

k

∑
j≥`
k≥0

j!

(j − `)!

1

j!k!
.
∂j+kp

∂zj∂z̄k
(w)(z − w)j−`(z − w)

k

Since p is R-valued, the twist (equation (2.4)) T (w, z) = −2 Im
(∑

`≥0
1
`!
∂`p
∂z` (z)(w − z)`

)
,

so

∑
`≥0

1

`!

∂`p

∂z`
(z)(w − z)`

=
∑
`≥0

1

`!

∑
j≥`
k≥0

j!

(j − `)!

1

j!k!
.
∂j+kp

∂zj∂z̄k
(w)(z − w)j−`(z − w)

k

 (w − z)`

=
∑
`≥0

∑
j≥`
k≥0

j!

`!(j − `)!

(−1)`

j!k!

∂j+kp

∂zj∂z̄k
(w)(z − w)j(z − w)

k
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=
∑
j≥0
k≥0

(
j∑
`=0

(
j

`

)
(−1)`

)
1

j!k!

∂j+kp

∂zj∂z̄k
(w)(z − w)j(z − w)

k

=
∑
k≥0

1

k!

∂kp

∂z̄k
(w)(z − w)

k
=
∑
j≥0

1

j!

∂jp

∂zj
(w)(z − w)j.

The second to last line uses the identity
∑j

`=0

(
j
`

)
(−1)` = δ0(j). The result follows

easily.

Corollary 2.2.

dNI(z, w, t) ∼ dNI(w, z, t).

Proof. This is a well known fact ([NSW85, Nag86]), but we are in a situation where the

computations can be explicit. We sketch a proof. If r = |t + T (w, z)|, it follows from

from Proposition 2.1 that it is enough to show that

|z − w|+ µ(z, r) ∼ |z − w|+ µ(w, r).

If µ(z, r) < |z − w| and µ(w, r) < |z − w|, there is nothing to prove, so (without loss of

generality) assume that µ(z, r) > |z−w|. By expanding p(z) around w and p(w) around

z, it can be shown that Λ(z, δ) ∼ Λ(w, δ) if δ > |w − z|. Thus, we see

Λ
(
w, µ(z, r)

)
∼ Λ

(
z, µ(z, r)

)
∼ r,

and it follows that µ(z, r) ∼ µ(w, r).

The next proposition contains two useful, though simple, computations.

Proposition 2.3.

∂T

∂z
(w, z) = −i∂p

∂z
(z)− i

∑
j≥1

1

j!

∂j+1p

∂z∂z̄j
(z)(w − z)

j
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and

∂T

∂z̄
(w, z) = i

∂p

∂z̄
(z) + i

∑
j≥1

1

j!

∂j+1p

∂zj∂z̄
(z)(w − z)j.

Proof. The proof is a short computation.

∂T

∂z
(w, z) = i

(
2n−1∑
j=1

1

j!

∂j+1p

∂zj+1
(z)(w − z)j −

2n∑
j=1

1

(j − 1)!

∂jp

∂zj
(z)(w − z)j−1

−
2n−1∑
j=1

1

j!

∂j+1p

∂z∂z̄j
(z)(w − z)

j

)

= −i∂p
∂z

(z)− i
∑
j≥1

1

j!

∂j+1p

∂z∂z̄j
(z)(w − z)

j
,

noting that the first sum cancels all but the first term of the second sum. Since T is

R-valued, ∂T
∂z̄

(w, z) = ∂T
∂z

(w, z) which gives the result for the second sum.

A useful consequence of these calculations is

Proposition 2.4. Let YJ be a product of |J | operators of the form Yj = Lz, L̄z,Lw, L̄w.

Then

|YJ
(
t+ T (w, z)

)
| ≤ C|J |

Λ(z, dNI(z, w, t))

dNI(z, w, t)|J |
.

Before we prove the Proposition 2.4, we note that the result would be false if we

replaced t+T (w, z) with t or T (w, z). Without both terms, there would be uncontrolled

derivatives of p remaining after applying Yj.

Proof. We have Lz
(
t+ T (w, z)

)
= ∂T

∂z
(w, z) + i∂p

∂z
(z) = −i

∑
j≥1

1
j!
∂j+1p(z)
∂z∂z̄j (w − z)

j
. Sim-

ilarly, L̄z
(
t + T (w, z)

)
= i

∑
j≥1

1
j!
∂j+1p(z)
∂zj∂z̄

(w − z)j. Analogous equalities (with z and w

interchanged and the sign switched) hold for Lw
(
t+T (w, z)

)
and L̄w

(
t+T (w, z)

)
since
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Lw
(
t+ T (w, z)

)
=

(
∂

∂w
− i

∂p

∂w

∂

∂t

)
(t− T (z, w)) = −i ∂p

∂w
(w)− ∂T

∂w
(z, w)

= −
(
i
∂p

∂w
(w) +

∂T

∂w
(z, w)

)
= −

(
∂

∂w
+ i

∂p

∂w

∂

∂t

)
(t+ T (z, w))

= −Lw(t+ T (z, w))

and L̄w
(
t+ T (w, z)

)
= −L̄w(t+ T (z, w)) But∣∣∣∣∣∑
j≥1

1

j!

∂j+1p(z)

∂zj∂z̄
(w − z)j

∣∣∣∣∣ ≤ c1
Λ(z, dNI(z, w, t))

dNI(z, w, t)
.

Higher order derivatives are easier. As we just showed, the result of applying Y1 to

t + T (w, z) leaves a polynomial that is a sum of derivatives of 4p (and hence well

controlled). There are no t terms remaining, so if j ≥ 2, applying Yj is a matter of

applying one of: ∂
∂z̄

, ∂
∂z

, ∂
∂w̄

, ∂
∂w

. Hence, the computation is simpler, and it can be

done naively, i.e. there is no need to find any cancelling terms (which in general are not

present anyway).

Finally, let

Mτp = eiτT (w,z) ∂

∂τ
e−iτT (w,z), and M = −i

(
t+ T (w, z)

)
.

2.1.2 Definition of OPF Operators

Let p be a subharmonic, nonharmonic polynomial. We say that Tτ is a one-parameter

family (OPF) of operators of order m with respect to the polynomial p if the following

conditions hold:

(a) There is a function Kτ ∈ C∞
((

(C×C)\{z = w}
)
× (R\{0})

)
so that for fixed τ ,

Kτ is a distributional kernel, i.e. if ϕ, ψ ∈ C∞
c (C) and suppϕ ∩ suppψ = ∅, then
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Tτ [ϕ] ∈ (C∞
c )′(C) and

〈Tτ [ϕ](·), ψ〉C =

∫∫
C×C

Kτ (z, w)ϕ(w)ψ(z) dwdz.

(b) There exists a family of functions Kτ,ε(z, w) ∈ C∞(C × C × R) so that if ϕ ∈

C∞
c (C× R),

Kτ,ε[ϕ]C×R(z, τ) =

∫
C×R

ϕ(w, τ)Kτ,ε(z, w) dwdτ

and limε→0Kτ,ε[ϕ]C×R(z) = Kτ [ϕ]C×R(z) in (C∞
c )′(C× R).

All of the additional conditions are assumed to apply the kernels Kτ,ε(z, w) uni-

formly in ε.

(c) Size Estimates. If Y J
τp is a product of |J | operators of the form Y j

τp = Zτp,z, Z̄τp,z,

Wτp,w, W τp,w, or Mτp where |J | = `+ n and n = #{j : Y j
τp = Mτp}, there exists a

constant C`,n,k so that for any k,

∣∣Y J
τpKτ,ε(z, w)

∣∣ ≤ C`,n,k
|z − w|m−2−`

τn+kΛ(z, |w − z|)k
if



m < 2

m = 2, k ≥ 1

m = 2, |w − z| > µ(z, 1
τ
)

(2.6)

Also, if m = 2 and |w − z| ≤ µ(z, 1
τ
), then

∣∣Mn
τpKτ,ε(z, w)

∣∣ ≤ Cn


log

(
2µ(z,

1
τ

)

|w−z|

)
n = 0

|τ |−n n ≥ 1

(2.7)

(d) Cancellation in w. If Y J
τp is a product of |J | operators of the form Y j

τp = Zτp, Z̄τp,

or Mτp where |J | = `+n and n = #{j : Y j
τp = Mτp}, there exists a constant C`,n,k
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and N` so that so that for ϕ ∈ C∞
c (D(z0, δ)) and any k,

sup
z∈C

∣∣∣∣∫
C
Y J
τpKτ,ε(z, w)ϕ(w) dw

∣∣∣∣ ≤ C`,n,k
δm−`

τ k+nΛ(z, δ)k
sup
w∈C

∑
|I|≤N`

δ|I|
∣∣XI

τpϕ(w)
∣∣ (2.8)

where XI
τp is composed solely of Zτp and Z̄τp.

(e) Cancellation in τ . IfXJ
τp is a product of |J | operators of the formXj

τp = Zτp,z, Z̄τp,z

or Wτp,w, W τp,w and |J | = n, there exists a constant Cn so that∫
R
XJ
τp

(
eiτtKτ,ε(z, w)

)
dτ ≤ Cn

µ(z, t+ T (w, z))m−n

µ(z, t+ T (w, z))2|t+ T (w, z)|
. (2.9)

(f) Adjoint. Properties (a)-(e) also hold for the adjoint operator T ∗τ whose distribution

kernel is given by Kτ,ε(w, z)

Note that for the τ -cancellation condition (2.9), we do not need to consider the case

Xj
τp = ∂

∂τ
since

∫
R

∂
∂τ

(
eiτ(t+T (w,z))Kτ,ε(z, w)

)
dτ = 0.

In size condition (c) and cancellation condition (d), the τ kΛ(z, |z−w|)k and τ kΛ(z, δ)k

terms are rapid decay terms. If OPF operators are to be partial Fourier transforms of

NIS operators on polynomial model domains, rapid decay should not be surprising; it is

consequence of being able to integrate parts from the Fourier transform formula. This

will be seen explicitly in Lemma 2.11. Ignoring the rapid decay terms, the size and

cancellation conditions of OPF operators are familiar. An order 2 OPF operator should

“invert” two derivatives, like the Newtonian potential. In R2, the Newtonian potential

has a logarithmic blowup on the diagonal, just like an order 2 OPF operator. For an

order 0 OPF operator, the blowup on the diagonal is the same as a Calderòn-Zygmund

kernel, and the decay of Kτ (0, z) is |z|−2, the same as a Calderòn-Zygmund kernel. For

the cancellation conditions, if ϕ is “normalized” appropriately, the cancellation condition
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(2.8) simplifies to

‖Y J
τpTτ [ϕ]‖L∞(C) . δj.

This is reminicent of cancellation of a Calderòn-Zygmund operator or an NIS operator.

2.2 Lq boundedness of order 0 operators

We are now ready to prove Theorem 1.1.

Theorem 1.1. If Tτ is an OPF operator of order 0, then Tτ , T
∗
τ are bounded operators

from Lq(C) to Lq(C), 1 < q <∞, with a constant independent of τ but depending on q.

The idea is to show that e−iτT (w,z)Kτ,ε satisfies the bounds of a Calderon-Zygmund

kernel and the operator Sτ with kernel e−iτT (w,z)Kτ,ε is restrictly bounded. These two

facts will allow us to use the T (1) theorem to prove that Sτ is bounded on L2(C), and

a result by Ricci and Stein [RS87] applies and proves boundedness of Tτ on Lq(C).

We need the follow two lemmas.

Lemma 2.5. Let Tτ be a family of operators of order m ≤ 2 with a family of kernel

approximating functions Kτ,ε. Fixing τ , Kτ,ε(z, w) satisfies:

(a) ∣∣∇z,w

(
e−iτT (w,z)Kτ,ε(z, w)

)∣∣ ≤ Ck
|w − z|m−3

|τ |kΛ(z, |w − z|)k
(2.10)

(b) If 2|w − w′| ≤ |w − z|, then

∣∣∣e−iτT (w,z)Kτ,ε(z, w)− e−iτT (w′,z)Kτ,ε(z, w
′)
∣∣∣ ≤ Ck

|w − w′|
|w − z|3−m|τ |kΛ(z, |w − z|)k

(2.11)
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(c) If 2|z − z′| ≤ |w − z|, then

∣∣∣e−iτT (w,z)Kτ,ε(z, w)− e−iτT (w,z′)Kτ,ε(z
′, w)

∣∣∣ ≤ Ck
|z − z′|

|w − z|3−m|τ |kΛ(z, |w − z|)k

(2.12)

Proof. It is immediate that the Mean Value Theorem shows (2.10) implies (2.11) and

(2.12). To prove (2.10), we use Proposition 2.3 and compute:

eiτT (w,z) ∂

∂z

(
e−iτT (w,z)Kτ,ε(z, w)

)
= −iτ ∂T

∂z
(w, z)Kτ,ε(z, w) +

∂Kτ,ε

∂z
(z, w)

=
∂Kτ,ε

∂z
(z, w)− τ

∂p

∂z
(z)Kτ,ε(z, w)− τ

∑
j≥1

1

j!

∂j+1p

∂z∂z̄j
(z)(w − z)

j
Kτ,ε(z, w).

Using the size estimate (2.6),∣∣∣∣ ∂∂z (e−iτT (w,z)Kτ,ε(z, w)
)∣∣∣∣ ≤ ZτpKτ,ε(z, w) +

τΛ(z, |w − z|)
|w − z|

Kτ,ε(z, w)

≤ Ck
|w − z|m−3

|τ |kΛ(z, |w − z|)k
.

A virtually identical calculation shows∣∣∣∣ ∂∂z̄ (e−iτT (w,z)Kτ,ε(z, w)
)∣∣∣∣ ≤ Ck

|w − z|m−3

|τ |kΛ(z, |w − z|)k

which shows
∣∣ ∂
∂z̄

(
e−iτT (w,z)Kτ,ε(z, w)

)∣∣ satisfies the bound in (2.10). The bounds for∣∣ ∂
∂w

(
e−iτT (w,z)Kτ,ε(z, w)

)∣∣ and
∣∣ ∂
∂w̄

(
e−iτT (w,z)Kτ,ε(z, w)

)∣∣ use a repetition of the calcula-

tions just performed and the identity e−iτT (w,z) = eiτT (z,w) (which follows from Proposi-

tion 2.1).

We now restrict ourselves to the case m = 0. Given an family Tτ of order 0, define

a related family of operators Sτ so that if Kτ (z, w) is the kernel of Tτ , the kernel of Sτ

is given by e−iτT (w,z)Kτ (z, w). We have the following:
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Lemma 2.6. Sτ and S∗τ are restrictly bounded, i.e. if ϕ ∈ C∞
c (D(0, 1)), ‖ϕ‖CN0

≤ 1

(where N0 is the constant from the cancellation condition (2.8)) and ϕR,z0(z) = ϕ( z−z0
R

),

then

‖Sτ (ϕR,z0)‖L2 ≤ AR, ‖(Sτ )∗(ϕR,z0)‖L2 ≤ AR

with the constant A independent of τ .

Proof. From the adjoint condition (f), it follows that we only have the prove the re-

stricted boundedness of Sτ .

‖Sτ,ε(ϕR,z0)‖L2 =

(∫
C

∣∣∣∣∫
C
e−iτT (w,z)Kτ,ε(z, w)ϕ(w−z0

R
) dw

∣∣∣∣2 dz
) 1

2

≤

(∫
|z−z0|<2R

∣∣∣∣∫
C
Kτ,ε(z, w)

(
e−iτT (w,z)ϕ(w−z0

R
)
)
dw

∣∣∣∣2 dz
) 1

2

+

(∫
|z−z0|≥2R

∣∣∣∣∫
C
e−iτT (w,z)Kτ,ε(z, w)ϕ(w−z0

R
) dw

∣∣∣∣2 dz
) 1

2

= I + II.

We estimate I first. By the cancellation condition (2.8)

∣∣∣∣∫
C
Kτ,ε(z, w)

(
e−iτT (w,z)ϕ(w−z0

R
)
)
dw

∣∣∣∣
≤ CN0

1

max{1, |τ |N0Λ(z, R)N0}
sup
w∈C

∑
|I|≤N0

R|I|
∣∣Y I
τp

(
e−iτT (w,z)ϕ(w−z0

R
)
)∣∣ .

We claim R|I|
∣∣Y I
τp

(
eiτT (z,w)ϕ(w−z0

R
)
)∣∣ ≤ C|I| max{1, |τ ||I|Λ(z, R)|I|}. To see this, we first

do the case Y I
τp = Zτp,w. It follows from Proposition 2.1 and Proposition 2.3 that

Zτp,w
(
eiτT (z,w)ϕ(w−z0

R
)
)

=
eiτT (z,w)

R

∂ϕ

∂w
(w−z0

R
) + τeiτT (z,w)

∑
j≥1

1

j!

∂j+1p

∂w∂w̄j
(w)(z − w)

j
ϕ(w−z0

R
).
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Hence
∣∣Zτp,w (eiτT (z,w)ϕ(w−z0

R
)
)∣∣ ≤ C

R
(1 + τΛ(z, R)). Iterating this argument proves the

claim. Thus, for |z − z0| ≤ 2R,∣∣∣∣∫
C
Kτ,ε(z, w)e−iτT (w,z)ϕ(w−z0

R
) dw

∣∣∣∣ ≤ C,

and

I ≤ C

(∫
|z−z0|<2R

dz

) 1
2

≤ AR.

When |z − z0| ≥ 2R, |z − z0| ∼ |z − w| for w ∈ suppϕ( ·−z0
R

), so

II ≤ C

(∫
|z−z0|≥2R

1

|z − z0|4

(∫
C

∣∣ϕ(w−z0
R

)
∣∣ dw)2

dz

) 1
2

≤ CR2

(∫
r>R

1

r3
dr

) 1
2

≤ AR.

The final ingredient we need to prove Theorem 1.1 is a result by Ricci and Stein

[RS87].

Theorem 2.7 (Ricci-Stein). In Rn × Rn, let K(· , ·) satisfy the following:

(a) K(· , ·) is a C1 function away from the diagonal {(x, y) ∈ Rn × Rn : x = y},

(b) |∇K(x, y)| ≤ A|x− y|−n−1 for some A ≥ 0,

(c) The operator f 7→
∫

Rn

K(x, y)f(y) dy initially defined on C∞
0 (Rn) extends to a

bounded operator on L2(Rn).

Then the operator T defined by

T [f ](x) =

∫
Rn

eiP (x,y)K(x, y)f(y) dy

can be extended to a bounded operator from Lq(Rn) to itself, with 1 < q < ∞. The

bound of this operator may depend on K, q, n and the degree d of P but is otherwise

independent of the coefficients of P .
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Proof (Theorem 1.1). Lemmas 2.5 and 2.6 and the Size Estimate (2.6) allow us to use

the T(1) Theorem (p. 294 in [Ste93]) and to prove L2 boundedness for Sτ with constants

independent of τ . Sτ satisfies the hypotheses of Theorem 2.7, so Tτ is a bounded operator

from Lq to itself with the bounds depending only on Sτ , q, and the degree of p. The

bounds do not depend on the coefficients of p or on τ .

2.3 Equivalence with NIS operators

2.3.1 NIS operators on polynomial model domains in C2

There are different notions NIS operators (e.g. [NRSW89, NS01]). We use the definition

from [NRSW89].

Definition 2.8 (Nonistropic Smoothing Operator of order m). Let

T [f ](z, t) =

∫
C×R

T
(
(z, t), (w, s)

)
f(w, s) dwds,

where T
(
(z, t), (w, s)

)
is a distribution which is C∞ away from the diagonal. We shall

say that T is a nonistropic smoothing operator which is smoothing of order m if there

exists a family

Tε[f ](z, t) =

∫
C×R

Tε
(
(z, t), (w, s)

)
f(w, s) dwds,

so that:

(a) Tε[f ] → T [f ] in C∞(C× R) as ε→ 0 whenever f ∈ C∞
c (C× R);

(b) Each Tε
(
(z, t), (w, s)

)
∈ C∞((C× R)× (C× R)

)
;

The following two conditions hold uniformly in ε,
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(c) ∣∣X ITε
(
(z, t), (w, s)

)
| ≤ c|I|

dNI(z, w, t− s)m−|I|

V
(
(z, t), (w, s)

) , (2.13)

where we have used the abbreviation X I = Xi1Xi2 · · · XIk and Xij = Lz, Lw, L̄z, or

L̄w;

(d) For each ` ≥ 0, there exists an N = N` so that whenever ϕ is a smooth (bump)

function supported in BNI

(
(z, t), δ

)
,

∣∣X IT [ϕ](z, t)
∣∣ ≤ C`δ

m−` sup
w,s

∑
|J |≤N`

δ|J |
∣∣X J [ϕ](w, s)

∣∣, (2.14)

whenever |I| = `;

(e) The same estimates hold for the operator T ∗, i.e. the operator with the kernel

T
(
(w, s), (z, t)

)
.

We now generate an OPF operator Tτ from an NIS operator T̃ on a polynomial model

domain Mp. Let k̃(p, q) be the kernel of an NIS operator T̃ . On C × R, each kernel k̃

can be associated with a kernel k by setting

k(z, w, t− s) = k̃((z, t), (w, s)).

The convolution structure in t follows from the property that a polynomial domain is

translation invariant in t = Re z2. Thus we have (for appropriate ϕ),

T̃ [ϕ](z, t) =

∫
C×R

k̃((z, t), (w, s))ϕ(w, s) dwds =

∫
C×R

k(z, w, t− s)ϕ(w, s) dwds.

We set

Kτ (z, w) =

∫
R
e−iτtk(z, w, t) dt
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and observe we also have

k(z, w, t) =
1

2π

∫
R
eitτKτ (z, w) dt.

The integrals representing Kτ (z, w) and k(z, w, t) do not necessarily converge. For a

tempered distribution T and a Schwartz function ϕ, we know that if F represents the

partial Fourier transform in t, by definition, 〈FT, ϕ〉 = 〈T,Fϕ〉. As an integral, this

corresponds to:

〈FT, ϕ〉 =

∫
C×R

k(z, w, t)

∫
R
e−itτϕ(w, τ) dτdwdt

=

∫
C×R

∫
R
k(z, w, t)e−itτ dt ϕ(w, τ) dwdt.

We make sense of the second line by the string of equalities and call the integral∫
R k(z, w, t)e

−itτ dt as being defined in the sense of Schwartz distributions. We simi-

larly justify writing k(z, w, t) = 1
2π

∫
R e

itτKτ (z, w) dτ . If one of (or both of) the kernels

is actually in L1(R) (in t or τ), then the integral defined in the sense of Schwartz distri-

butions agrees with the standard definition.

2.3.2 NIS Operator on C× R generates a family Tτ on C

Theorem 2.9. An NIS operator T̃ of order m ≤ 2 on a polynomial model domain

Mp = {(z1, z2) ∈ C2 : Im z2 = p(z1)} generates a family of operators Tτ of order m ≤ 2

with respect to the polynomial p.

Theorem 2.9 is proved in a series of lemmas. Two comments first, however. One,

the approximation conditions imply one another since a partial Fourier transform is a

continuous operator on the space of Schwartz distributions. Also, the adjoint conditions
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allow us to focus only k and Kτ as the computations will automatically apply to k∗ and

K∗
τ .

We first show that if k̃ is an NIS operator of order m ≤ 2, then Kτ is the kernel for

a family Tτ of operators on C.

Lemma 2.10. The operator Tτ has the w-cancellation condition (2.8).

Proof. Let Y J
τp be a product of |J | operators of the form Y j

τp = Zτp, Z̄τp, Mτp where

|J | = `+ n and n = #{j : Y j
τp = Mτp} and let ϕ ∈ C∞(D(z0, δ)). We have

Kτ,ε(z, w) =

∫
R
e−iτtkε(z, w, t) dt,

so that integration by parts yields

ZτpKτ,ε(z, w) = Zτp

∫
R
e−iτtkε(z, w, t) dt

=
∂

∂z

∫
R
e−iτtkε(z, w, t) dt−

∫
R
τ
∂p

∂z
(z)e−iτtkε(z, w, t) dt

=

∫
R
e−iτtLkε(z, w, t) dt.

Similarly, Z̄τp,zKτ,ε(z, w) =
∫

R e
−iτtL̄zkε(z, w, t) dt. Also, recalling that Mf(z, w) =

−i
(
t+ T (w, z)

)
f(z, w), we have

MτpKτ,ε(z, w) =

∫
R
e−iτ(t+T (w,z))Mkε(z, w, t) dt.

Thus, ∫
C
Y J
τpKτ,ε(z, w)ϕ(w) dw =

∫
C

∫
R
e−iτtYJk(z, w, t)ϕ(w) dtdw,

with the correspondence that if Y j
τp = Zτp, Z̄τp,Mτp, then Yj = L, L̄,M respectively.



38

So, ∫
C
Y J
τpKτ,ε(z, w)ϕ(w) dw =

∫∫
C×R

(YJkε)(z, w, t)e−iτtϕ(w) dtdw

=
cn+k

τn+k

∫∫
C×R

(
∂n+k

∂tn+k
YJ
)
kε(z, w, t)e

−iτtϕ(w) dtdw

=
cn+k

τn+k

∫∫
C×R

(
∂n+k

∂tn+k
YJ
)
kε(z, w, t)e

−iτtϕ(w)η(w, t) dtdw

+
cn+k

τn+k

∫∫
C×R

(
∂n+k

∂tn+k
YJ
)
kε(z, w, t)e

−iτtϕ(w)(1− η(w, t)) dtdw (2.15)

where η ∈ C∞
c (C × R) is a bump function on BNI((z, 0), δ). The strategy is to expand(

∂n+k

∂tn+kYJ
)
kε(z, w, t) and estimate an arbitrary term for each of integral in (2.15). It is

important to remember that in YJ , n of the terms are M and a L or L̄ can hit either

an M term or kε(z, w, t).

Expanding
(
∂n+k

∂tn+kYJ
)
kε(z, w, t), we see

∂n+k

∂tn+k
YJkε(z, w, t)

=
∂n+k

∂tn+k

 ∑
|J0|+···+|Jn|=`

(
c|J0|,...,|Jn|X J0kε(z, w, t)

n∏
j=1

(−i)X Jj
(
t+ T (w, z)

))
=

∑
|J0|+···+|Jn|=`

c|J0|,...,|Jn|
∑

`0+···+`n=n+k

c`0,...,`n
∂`0

∂t`0
X J0kε(z, w, t)

n∏
j=1

∂`j

∂t`j
X Jj

(
t+ T (w, z)

)
,

(2.16)

where X Jj is an operator composed only of X j = L and L̄. We pick an arbitrary term

from the sum and show that it has the desired bound. Taking an arbitrary term from

(2.16), we estimate the integrals from (2.15) which reduces to the following two integrals:

I =

∣∣∣∣∣ 1

τn+k

∫∫
C×R

∂`0

∂t`0
X J0kε(z, w, t)

n∏
j=1

∂`j

∂t`j
X Jj

(
t+ T (w, z)

)
e−iτtϕ(w)η(w, t) dtdw

∣∣∣∣∣
and

II =

∣∣∣∣∣∣ 1
τn+k

∫∫
C×R

∂`0

∂t`0
X J0kε(z, w, t)

n∏
j=1

∂`j

∂t`j
X Jj

(
t+ T (w, z)

)
e−iτtϕ(w)(1− η(w, t)) dtdw

∣∣∣∣∣∣
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where |J0| + · · · + |J`| = ` and `0 + · · · + `n = n+ k. Recall from Proposition 2.4, we

have ∣∣∣∣ ∂`j∂t`j
X Jj

(
t+ T (w, z)

)∣∣∣∣ ≤ c`j ,|Jj |Λ(z, dNI(z, w, t))
1−`jdNI(z, w, t)

−|Jj |.

Using this fact and the cancellation condition (2.8), I has the estimate

I ≤
c|J0|,`0
|τ |n+k

δm−|J0|

Λ(z, δ)`0
sup
(w,t)

∑
|I|≤N|J0|,`0

δ|I|

∣∣∣∣∣∣X I

e−iτtϕ(w)
n∏
j=1

(
∂`j

∂t`j
X Jj

(
t+ T (w, z)

))
η(w, t)

∣∣∣∣∣∣
≤
c|J0|,`0
|τ |n+k

δm−|J0|

Λ(z, δ)`0
sup
(w,t)

∑
|I|≤N|J0|,`0

δ|I|
∑

|I0|+···+|In+1|=|I|

cI0,...,In+1

∣∣∣∣∣X I0
(
e−iτtϕ(w)

)
×

n∏
j=1

(
X Ij

∂`j

∂t`j
X Jj

(
t+ T (w, z)

))
X In+1η(w, t)

∣∣∣∣∣
≤

cn,`,k
|τ |n+k

δm−|J0|

Λ(z, δ)`0
sup
(w,t)

∑
|I|≤N|J0|,`0

δ|I|
∑

|I0|+···+|In+1|=|I|

∣∣X I0(e−iτtϕ(w))
∣∣Λ(z, δ)n−`1−···−`n

× δ−(|I1|+|J1|+···+|In|+|Jn|)δ−|In+1|

≤
cn,`,k
|τ |n+k

Λ(z, δ)−kδm−` sup
(w,t)

∑
|I0|≤N|J0|,`

δ|I0|
∣∣X I0(e−iτtϕ(w))

∣∣
=

cn,`,k
|τ |n+k

Λ(z, δ)−kδm−` sup
w

∑
|I0|≤N|J0|,`

δ|I0|
∣∣XI0

τ ϕ(w)
∣∣.

To estimate II, we use size estimates and the support size of ϕ. Also, if we make the

substitution s = µ
(
z, t + T (w, z)

)−1
, then |ds

dt
| ∼ |

(
(t + T (w, z))µ

(
z, t + T (w, z)

))
|−1.

This means |1
s
ds
dt
| ∼ |t+ T (w, z)|−1, and

II ≤
cn,`
|τ |n+k

‖ϕ‖L∞
∫
|w−z0|≤δ

∫
|t+T (w,z)|≥Λ(z,δ)

dNI(z, w, t)m−2−|J0|

Λ(z, dNI(z, w, t))1+`0

Λ(z, dNI(z, w, t))n

dNI(z, w, t)|J1|+···|Jn|Λ(z, dNI(z, w, t))`1+···+`n
× dtdw

≤
cn,`
|τ |n+k

‖ϕ‖L∞
∫
|w−z0|≤δ

∫
|t+T (w,z)|≥Λ(z,δ)

µ(z, t+ T (w, z))m−`−2 1
|t+ T (w, z)|n+k−n+1

dtdw

≤
cn,`
|τ |n+k

‖ϕ‖L∞Λ(z, δ)−kδ2
∫
|s|≤ 1

δ

s1−m+` ds

≤
cn,`
|τ |n+k

‖ϕ‖L∞Λ(z, δ)−kδm−`.
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The proof that Kτ,ε satisfies the size conditions (2.6) and (2.7) is broken into two

lemmas. We handle the m ≤ 1 case and the m = 2 case.

Lemma 2.11. If m ≤ 1, the kernel Kτ,ε satisfies the size condition (2.6).

Proof. It is enough to assume

Y J
τp = Mn

τp = eiτT (w,z) ∂
n

∂τn
e−iτT (w,z)

where |J | = n. Let η ∈ C∞
c (R) so that η ≡ 1 on [−1, 1], 0 ≤ η ≤ 1, and |η(n)| ≤ cn.

Also, let ηA(t) = η(t/A). We will estimate

∂n

∂τn

∫
R
e−iτ(t+T (w,z))kε(z, w, t)ηA(t) dt,

and (2.6) will follow by sending A → ∞. The integral is compactly supported and the

integrand is smooth, we can apply the derivatives inside of the integral. Integrating by

parts (n+ k) times shows

cn

∣∣∣∣∫
R
e−iτ(t+T (w,z))

(
t+ T (w, z)

)n
kε(z, w, t)ηA

(
t+ T (w, z)

)
dt

∣∣∣∣
=

cn+k

|τ |n+k

∣∣∣∣∫
R
e−iτ(t+T (w,z)) ∂

n+k

∂tn+k

((
t+ T (w, z))nkε(z, w, t)ηA(t+ T (w, z))

)
dt

∣∣∣∣
=

cn+k

|τ |n+k

∣∣∣∣∣∣
∫

R
e−iτ(t+T (w,z))

n+k∑
j=0

cj
∂j

∂tj

((
t+ T (w, z))nkε(z, w, t)

)
η

(n+k−j)
A

(
t+ T (w, z)

)
dt

∣∣∣∣∣∣
≤ cn+k

|τ |n+k

n+k∑
j=1

[ ∫
|t+T (w,z)|≤Λ(z,|w−z|)

Λ(z, |w − z|)n−1−j |w − z|m−2 1
An+k−j dt

+
∫

Λ(z,|w−z|)≤|t+T (w,z)|≤2A
|t+ T (w, z)|n−1−jµ(z, |t+ T (w, z)|)m−2 1

An+k−j

∣∣∣η(n+k−j)( t+T (w,z)
A

)∣∣∣ dt].
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If j = n+ k, then

1
|τ |n+k

∫
|t+T (w,z)|≤Λ(z,|w−z|)

Λ(z, |w − z|)n−1−(n+k)|w − z|m−2 dt

+
1

|τ |n+k

∫
Λ(z,|w−z|)≤|t+T (w,z)|≤2A

|t+ T (w, z)|n−1−jµ(z, |t+ T (w, z)|)m−2 1
An+k−j η

( t+T (w,z)
A

)
dt

≤ cn+k
|w − z|m−2

|τ |n+kΛ(z, |w − z|)k
+
|w − z|m−1

|τ |n+k

∫
Λ(z,|w−z|)≤|t+T (w,z)|

|t+ T (w, z)|−1−kµ(z, |t+ T (w, z)|)−1 dt.

Using the substitution s = µ(z, |t+ T (w, z)|)−1, so |ds
dt
| ∼ 1

µ(z,|t+T (w,z)|)|t+T (w,z)| ,

|w − z|m−1

|τ |n+k

∫
Λ(z,|w−z|)≤|t+T (w,z)|

|t+ T (w, z)|−1−kµ(z, |t+ T (w, z)|)−1 dt

∼ |w − z|m−1

|τ |n+k

∫
|s|≤ 1

|w−z|

1

Λ(z, 1
s
)k
ds

≤ cn+k
|w − z|m−2

|τ |n+kΛ(z, |w − z|)k
.

If j < n+k, then using the support condition of η
(j)
A

(
t+T (w, z)

)
that |t+T (w, z)| ∼ A,

the estimate simplifies to

1

|τ |n+k

∫
|t+T (w,z)|≤Λ(z,|w−z|)

Λ(z, |w − z|)n−1−j|w − z|m−2 1

An+k−j dt

+
1

|τ |n+k

∫
Λ(z,|w−z|)≤|t+T (w,z)|≤2A

|t+ T (w, z)|n−1−jµ(z, |t+ T (w, z)|)m−2 1

An+k−j η
(n+k−j)( t+T (w,z)

A

)
dt

≤ cn+kΛ(z, |w − z|)n−j|w − z|m−2 1

An+k−j + cn+kA
n−1−jµ(z, A)m−2 1

An+k−j+1

A→∞−→ 0.

This complete the proof for m ≤ 1.

Lemma 2.12. If m = 2, the kernel Kτ,ε satisfies the size conditions (2.6) and (2.6).

Proof. As is Lemma 2.12, we can assume that

Y J
τp = Mn

τp = eiτT (w,z) ∂
n

∂τn
e−iτT (w,z)
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where |J | = n.

We first show the case µ(z, 1
τ
) ≥ |w−z| and assume n = 0. Recall that |kε(z, w, t)| ≤

c1
Λ(z,|w−z|)+|t+T (w,z)| and |∂kε

∂t
(z, w, t)| ≤ c2

Λ(z,|w−z|)2+|t+T (w,z)|2 . Since kε is not integrable on

R, we need to integrate by parts to obtain an estimate on Kτ,ε. However, since |w − z|

is small, we need to be careful to integrate by parts as few times as possible and then

only for large t. Let A be a large number.∣∣∣∣∣
∫
|t+T (w,z)|≤ A

|τ |

e−iτtkε(z, w, t) dt

∣∣∣∣∣ ≤
∣∣∣∣∫
|t+T (w,z)|≤Λ(z,|w−z|)

e−iτtkε(z, w, t) dt

∣∣∣∣
+

∣∣∣∣∣
∫

Λ(z,|w−z|)≤|t+T (w,z)|≤ 1
|τ |

e−iτtkε(z, w, t) dt

∣∣∣∣∣+
∣∣∣∣∣
∫

1
|τ |≤|t+T (w,z)|≤ A

|τ |

e−iτtkε(z, w, t) dt

∣∣∣∣∣
. 1 +

∫
Λ(z,|w−z|)≤|t+T (w,z)|≤ 1

|τ |

1

|t+ T (w, z)|
dt

+
1

|τ |

∣∣∣∣∣
∫

1
|τ |≤|t+T (w,z)|≤ A

|τ |

e−iτt
∂kε
∂t

(z, w, t) dt

∣∣∣∣∣+ 1

|τ ||t|

∣∣∣∣|t+T (z,w)|=A
τ

|t+T (z,w)|= 1
τ

. 1 + log

(
1/|τ |

Λ(z, |w − z|)

)
+

1

|τ |

∫
1
|τ |≤|t+T (w,z)|≤ A

|τ |

1(
t+ T (w, z)

)2 dt
. 1 + log

(
1/|τ |

Λ(z, |w − z|)

)
.

This is actually the estimate we are looking for since

log

(
1/|τ |

Λ(z, |w − z|)

)
∼ log

(
inf
j,k≥1

(
1(

|azjk||τ |
)1/j+k 1

|w − z|

)j+k)

∼ inf
j,k≥1

log

(
1(

|azjk||τ |
)1/j+k 1

|w − z|

)j+k

∼ inf
j,k≥1

log

(
1(

|azjk||τ |
)1/j+k 1

|w − z|

)

∼ log

(
inf
j,k≥1

(
1(

|azjk||τ |
)1/j+k

)
1

|w − z|

)
∼ log

(µ(z, 1
τ
)

|w − z|

)
.

Also, the estimate is independent of A, so we can let A→∞.
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Now assume k ≥ 1. Let η ∈ C∞
c (R), 0 ≤ η ≤ 1, supp η(· + T (w, z)) ⊂ [−2, 2],

η
(
t + T (w, z)

)
= 1 if |t| ≤ 1, and η(k)

(
t + T (w, z)

)
≤ ck. We show the case |w − z| ≥

µ(z, 1
τ
). Let A ∈ R be large. Integration by parts n+ k times shows:∣∣∣∣ ∂n∂τn
∫

R
e−iτ

(
t+T (w,z)

)
kε(z, w, t)η(

t+T (w,z)
A ) dt

∣∣∣∣
=

∣∣∣∣∣∣
n+k∑
j=0

cj
τn+k

∫
R
e−iτ

(
t+T (w,z)

)
∂j

∂tj
((
t+ T (w, z)

)n
kε(z, w, t)

) 1
An+k−j

dn+k−jη

dtn+k−j

(
t+T (w,z)

A

)
dt

∣∣∣∣∣∣
≤ C

|τ |n+k

n+k−1∑
j=0

AAn−1−jA−n−k+j +
∫

R

∣∣∣∣ ∂n+k

∂tn+k

((
t+ T (w, z)

)n
kε(z, w, t)

)∣∣∣∣ dt


≤ C

|τ |n+k

(
1
Ak

+
∫
|t+T (w,z)|≤Λ(z,|w−z|)

1
Λ(z, |w − z|)k+1

dt

+
∫
|t+T (w,z)|≥Λ(z,|w−z|)

1
|t+ T (w, z)|k+1

dt

)

≤ C

|τ |n+k

(
1
Ak

+
1

Λ(z, |w − z|)k

)
.

Sending A→∞ yields the desired estimate.

We have one estimate left to compute: the case |w − z| < µ(z, 1
τ
) and n ≥ 1. Let

A be a large number. Let 0 ≤ ψ1, ψ
A
2 ≤ 1 so that 1 = ψ1 + ψA2 on [−A,A]. Let

suppψ1 ⊂ [−2, 2] and suppψA2 ⊂ {t : |t| ∈ [3
2
, 2A]}, and assume | ∂n

∂tn
ψA2 | ≤ cn

An if |t| ≥ A
2

and |∂nψ1

∂tn
|, |∂

nψA
2

∂tn
| ≤ cn if |t| ≤ 2. Since |z − w| ≤ µ(z, 1

τ
), Λ(z, |z − w|) . 1

τ
.∣∣∣∣ ∂n∂τn

∫
R
e−iτ(t+T (w,z))kε(z, w, t)

(
ψ1

(
τ(t+ T (w, z))

)
+ ψ2

(
τ(t+ T (w, z))

))
dt

∣∣∣∣
≤ cn

∫
|t+T (w,z)|≤ 2

|τ |

|t+ T (w, z)|n|kε(z, w, t)| dt

+
n∑
j=0

cj

∣∣∣∣∣
∫

R

(
t+ T (w, z)

)n∂jψA2 (τ(t+ T (w, z))
)

∂τ j
kε(z, w, t)e

−iτ(t+T (w,z)) dt

∣∣∣∣∣
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Picking an arbitrary term and integrating by parts (n+ 2) times, we have∣∣∣∣∫
R

(
t+ T (w, z)

)n ∂jψA
2 (τ(t+ T (w, z)))

∂τ j
kε(z, w, t)e−iτ(t+T (w,z)) dt

∣∣∣∣
≤ cn+2

n+2∑
k=0

∣∣∣∣∫
R

1
|t+ T (w, z)|n+2

∂k

∂tk

(
(t+ T (w, z))nkε(z, w, t)

)
τn+2−k ∂

n+2+j−kψA
2 (τ(t+ T (w, z)))

∂τ j∂tn+2−k
dt

∣∣∣∣
If n+ 2 + j − k ≥ 1, the term in the sum has support near 1

|τ | and A
|τ | , so it is bounded

by ∣∣∣∣∫
R

1

|τ |n+2

∂k

∂tk

(
(t+ T (w, z))nkε(z, w, t)

)
τn+2−k ∂

n+2+j−kψA2 (τ(t+ T (w, z)))

∂τ j∂tn+2−k dt

∣∣∣∣
≤ cn
|τ |n+2

1

|τ |n−1−k |τ |
n+2−k 1

|τ |
+

cn
|τ |n+2

An−1−k

|τ |n−1−k
|τ |n+2−k

An+2−k+j
A

|τ |
A→∞−→ cn

|τ |n
.

Finally, if n+ 2 + j − k = 0, then j = 0 and k = n+ 2 and we have the estimate∣∣∣∣∫
R

1

|τ |n+2

∂n+2

∂tn+2

(
(t+ T (w, z))nkε(z, w, t)

)
ψA2
(
τ(t+ T (w, z))

)
dt

∣∣∣∣
≤ cn
|τ |n+2

∫
|t+T (w,z)|≥ 1

2|τ |

1

|t+ T (w, z)|3
dt =

cn
|τ |n

.

Lemma 2.13. The kernel Kτ,ε satisfies the τ -cancellation condition (2.9).

Proof. Since F−1F = I in the sense of Schwartz distributions,

|X Jk(z, w, t)| ≤ C|J |
µ(z, t+ T (w, z))m−|J |

V (z, µ(z, t+ T (w, z))))

implies 1
2π

∫
RX

J
τp

(
eiτtKτ,ε(z, w)

)
dτ = X Jk(z, w, t) satisfies the same estimates.

The proof of Theorem 2.9 is complete.
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2.3.3 A family of operators Tτ on C generate an NIS operator

k̃ on C× R

Theorem 2.14. A OPF operator Tτ of order m ≤ 2 with respect to the subharmonic,

nonharmonic polynomial p generates an NIS operator k̃ of order m ≤ 2 on the polynomial

model domain Mp = {(z1, z2) ∈ C2 : Im z2 = p(z1)}.

Theorem 2.14 is proven in the same matter as Theorem 2.9 and the same comments

about the approximation and adjoint conditions apply.

Lemma 2.15. The operator k̃ satisfies the NIS cancellation conditions (2.14).

Proof. Let ϕ ∈ C∞
c

(
B((z, t), δ)

)
. Let η ∈ C∞

c (R) with supp η ⊂ [− 2
Λ(z,δ)

, 2
Λ(z,δ)

] and

η(τ) = 1 when τ ∈ [− 1
Λ(z,δ)

, 1
Λ(z,δ)

]. Let X J be a product of |J | operators of the form of

X j = L̄z and Lz. Then

X J

∫∫
C×R

kε(z, w, t− s)ϕ(w, s) dwds =

∫∫
C×R

X Jkε(z, w, t− s)ϕ(w, s) dwds

=
1

2π

∫
C

∫
R

∫
R
X J
(
eiτ(t−s)Kτ,ε(z, w)

)
ϕ(w, s) dτdsdw̄

=
1

2π

∫
C

∫
R
eitτXJ

τpKτ,ε(z, w)ϕ(w, s) dwdτ

=
1

2π

∫
R
eitτXJ

τp

∫
C
Kτ,ε(z, w)ϕ(w, τ) dwdτ

=
1

2π

∫
R
eitτXJ

τp

∫
C
Kτ,ε(z, w)ϕ(w, τ) dw η(τ)dτ

+
1

2π

∫
R
eitτXJ

τp

∫
C
Kτ,ε(z, w)ϕ(w, τ) dw (1− η(τ))dτ

= I + II.
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We estimate I and II separately. By (2.8),

|I| ≤ c|J |δ
m−|J |

∫
R

sup
w

∑
|I|≤N|J|

δ|I|
∣∣∣XI

τp

(
ϕ(w, τ)η(τ)

)∣∣∣ dτ
= c|J |δ

m−|J |
∫

R
sup
w

∑
|I|≤N|J|

δ|I|
∣∣∣XI

τp

(
ϕ(w, τ)

)
η(τ)

∣∣∣ dτ
≤ c|J |δ

m−|J |
∫

R
|η(τ)| sup

w

∑
|I|≤N|J|

δ|I|‖X Iϕ‖L1(t) dτ

≤ c|J |δ
m−|J | 1

Λ(z, δ)

∑
|I|≤N|J|

δ|I|‖X Iϕ‖L∞(C×R)Λ(z, δ).

The last line follows from Hölder’s inequality and the size of suppϕ.

|II| = 1

2π

∣∣∣∣∫
R
eitτ
(
1− η(τ)

) 1

τ 2

(
XJ
τp

∫
C
τ 2Kτ,ε(z, w)ϕ(w, τ) dw

)
dτ

∣∣∣∣
≤ c|J |

∫
|τ |> 1

Λ(z,δ)

|τ |−2δm−|J |
∑

|I|≤N|J|

δ|I|‖τ 2XI
τpϕ(w, τ)‖L∞(w) dτ. (2.17)

The terms in the sum can be rewritten the more useful way:

‖τ 2(XI)#ϕ(w, τ)‖L∞(w) = sup
w

∣∣∣∣ 1

2π

∫
R
τ 2XI

τpe
iτtϕ(w, t) dt

∣∣∣∣
= c sup

w

∣∣∣∣∫
R
eiτt
(
∂2

∂t2
X Iϕ(w, t)

)
dt

∣∣∣∣
≤ c2

∥∥∥∥ ∂2

∂t2
X Iϕ

∥∥∥∥
L∞(C×R)

Λ(z, t). (2.18)

Using the estimate from (2.18) in (2.17),

|II| ≤ c|J |δ
m−|J |

∫
|τ |> 1

Λ(z,δ)

|τ |−2
∑

|I|≤N|J|

δ|I|
∥∥∥∥( ∂2

∂t2
X I

)
ϕ(w, t)

∥∥∥∥
L∞(C×R)

Λ(z, δ) dτ

≤ c|J |δ
m−|J |

∑
|I|≤N|J|

δ|I|Λ(z, δ)2

∥∥∥∥( ∂2

∂t2
X I

)
ϕ(w, t)

∥∥∥∥
L∞(C×R)

≤ c|J |δ
m−|J |

∑
|I|≤N ′|J|

δ|I|
∥∥X Iϕ(w, t)

∥∥
L∞(C×R)

.
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In the final estimate, we used the fact that Λ(z, δ) ∂
∂t

can be generated by commutators

of δX terms.

Lemma 2.16. The operator k̃ has the NIS size conditions (2.13).

Proof. It is enough to find the estimate on |kε(z, w, t)|. We handle the m = 2 separately.

First assume m ≤ 1. If dNI(z, w, t) = |z − w|, then∫
R
eiτtKτ,ε(z, w) dτ =

1

2π

∫
|τ |≤ 1

Λ(z,|w−z|)

eiτtKτ,ε(z, w) dτ

+
1

2π

∫
|τ |≥ 1

Λ(z,|w−z|)

eiτtKτ,ε(z, w) dτ.

Estimating the first integral gives us:∣∣∣∣∣
∫
|τ |≤ 1

Λ(z,|w−z|)

eiτtKτ,ε(z, w) dτ

∣∣∣∣∣ ≤ c0
|w − z|m

|w − z|2Λ(z, |w − z|)
= c0

dNI(z, w, t)
m

V (z, dNI(z, w, t))
.

The tail term is no harder: by (2.6) with ` = n = 0 and k = 2,∣∣∣∣∣
∫
|τ |≥ 1

Λ(z,|w−z|)

eiτtKτ,ε(z, w) dτ

∣∣∣∣∣ ≤ c2
|w − z|m

|w − z|2Λ(z, |w − z|)2

∫
|τ |≥ 1

Λ(z,|w−z|)

1

τ 2
dτ

≤ c2
|w − z|m

|w − z|2Λ(z, |w − z|)
.

The case dNI(z, w, t) = µ(z, t+ T (w, z)) is the τ -cancellation condition (2.9).

Now assume m = 2. The estimate to prove is

|kε(z, w, t)| ≤ C
dNI(z, w, t)

2

V (z, dNI(z, w, t))
= C

1

Λ(z, dNI(z, w, t))
.

Let η ∈ C∞
c (R) where supp η ⊂ [−2, 2], η(τ) = 1 if |τ | ≤ 1, 0 ≤ η ≤ 1, and

∣∣∣∂kη
∂τk (τ)

∣∣∣ ≤ Ck.

Let Λ = Λ(z, dNI(z, w, t)). We have

kε(z, w, t) =
1

2π

∫
R
eiτtKτ,ε(z, w) dτ

=

∫
R
eiτtKτ,ε(z, w)η(τΛ) dτ +

∫
R
eiτtKτ,ε(z, w)(1− η(τΛ)) dτ

= I + II.
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Before we estimate I, observe
∫∞
δ

log s
sk ds = −k log s

sk+1 + k
k+1

1
sk . Also, with the change of

variables s =
2µ(z,

1
τ

)

|w−z| , | ∂s
∂τ
| ∼ µ(z, 1

τ
)

|w−z|
1
|τ | and Λ(s, |w − z|) ∼ 1

|τ | , so

I .
∫
|τ |≤ 2

Λ

log

(
2µ(z,

1
τ

)

|w−z|

)
dτ ∼

∫
|s|≥µ(z,Λ)

|w−z|

log s

sΛ(z, |w − z|s)
ds

∼
∫ ∞

µ(z,Λ)
|w−z|

inf
j,k≥1

1

|azjk||w − z|j+k
log s

sj+k+1
ds

. inf
j,k≥1

1

|azjk||w − z|j+k

 log
(
µ(z,Λ)
|w−z|

)
(
µ(z,Λ)
|w−z|

)j+k+1
+

1(
µ(z,Λ)
|w−z|

)j+k


. inf
j,k≥1

1

|azjk||w − z|j+k
|w − z|j+k

µ(z,Λ)j+k
∼ 1

Λ(z, µ(z,Λ))
=

1

Λ
.

To estimate II, we need to separate the cases Λ = Λ(z, |w − z|) and Λ = |t + T (w, z)|.

We first do the case Λ = Λ(z, |w − z|). By (2.6) with k = 2 and ` = n = 0,

II .
∫ ∞

1
Λ

1

τ 2Λ2
dτ ∼ 1

Λ
.

Now assume Λ = |t+ T (w, z)|. Then

II .
1(

t+ T (w, z)
)2
∣∣∣∣∣
∫
|τ |≥ 1

|t+T (w,z)|

eiτ(t+T (w,z)) ∂
2

∂τ2

(
e−iτT (w,z)Kτ,ε(z, w)(1− η(τ |t+ T (w, z)|))

)
dτ

∣∣∣∣∣ .
If both τ -derivatives are applied to Kτ,ε,

1(
t+ T (w, z)

)2 ∫
|τ |≥ 1

|t+T (w,z)|

∣∣∣∣ ∂2

∂τ 2

(
e−iτT (w,z)Kτ,ε(z, w)

)∣∣∣∣ (1− η(τ |t+ T (w, z)|)
)
dτ

∼ 1(
t+ T (w, z)

)2 ∫
|τ |≥ 1

|t+T (w,z)|

1

τ 2
dτ ∼ 1(

t+ T (w, z)
) .

Next, if one τ -derivative is applied to Kτ,ε and one to η, then

1(
t+ T (w, z)

) ∫
|τ |≥ 1

|t+T (w,z)|

∣∣∣∣ ∂∂τ (e−iτT (w,z)Kτ,ε(z, w)
)∣∣∣∣ η′(τ |t+ T (w, z)|)) dτ

∼ 1(
t+ T (w, z)

) ∫
|τ |∼ 1

|t+T (w,z)|

1

τ
dτ ∼ 1(

t+ T (w, z)
) .
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Finally, if η receives both τ -derivatives,∫
|τ |≥ 1

|t+T (w,z)|

|Kτ,ε(z, w)| η′′(τ |t+ T (w, z)|)) dτ ∼
∫
|τ |∼ 1

|t+T (w,z)|

dτ ∼ 1(
t+ T (w, z)

) .

Proving Theorem 2.9 and Theorem 2.14 proves Theorem 1.2.
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Chapter 3

The Heat Equation and Smoothness

of the Heat Kernel

Let Sτp : L2(C) → L2(C) be the Szegö projection which is the projection of L2(C) onto

the null space of Z̄τp, and denote the integral kernel of Sτp as Sτp(z, w). We know from

[Chr91a] that Sτp ∈ C∞(C× C) as Z̄τpSτp = 0 even on the diagonal.

For the remainder of the work, we will primarily be concerned with inverting the

“Laplace” operators

�τp = −Z̄τpZτp

and

�̃τp = −ZτpZ̄τp

via the heat semigroups e−s�τp and e−s
e�τp , respectively. By writing out �τp and �̃τp

explicitly (which we do in Chapter 4), we see that it requires the same analysis to analyze

�τp for τ < 0 as �̃τp when τ > 0. Similarly, the analysis to study �̃τp for τ > 0 proves

the identical results for �τp when τ < 0. As such, we can assume that τ > 0. The

analysis of �̃τp is more subtle than that of �τp because in L2(C), ker �̃τp = ker Z̄τp is

large while ker �τp = {0}.

We define the heat operators

Hτp =
∂

∂s
+ �τp
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and

H̃τp =
∂

∂s
+ �̃τp.

Given a function f defined on C, we study the initial value problem of finding smooth

u, ũ : (0,∞)× C → C so that
Hτp[u](s, z) = 0 s > 0, z ∈ C

lim
s→0

u(s, ·) = f(·) with convergence in an appropriate norm.

(3.1)

and 
H̃τp[ũ](s, z) = 0 s > 0, z ∈ C

lim
s→0

ũ(s, ·) = f̃(·) with convergence in an appropriate norm.

(3.2)

We will show that the solutions u and ũ defined on (0,∞)×C are given by semigroups

of operators

u(s, z) = e−s�τp [f ](z)

and

ũ(s, z) = e−s
e�τp [f ](z).

We also prove the existence of functions Hτp(s, z, w) and H̃τp(s, z, w) which are smooth

away from the diagonal {(s, z, w) : s = 0 and z = w} and have the property that the

heat semigroups e−s�τp and e−s
e�τp can be written

e−s�τp [f ](z) =

∫
C
f(w)Hτp(s, z, w) dw

and

e−s
e�τp [f ](z). =

∫
C
f(w)H̃τp(s, z, w) dw.

Let α be a multiindex. We let Xα be a product of |α| operators of the form X = X1

or X2. Similarly, Uα is a product of |α| operators of the form U = U1 or U2.
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3.1 Heat semigroups e−s�τp and e−s�̃τp on L2(C)

We know that Z̄τp and Zτp are closed, densely defined operators on L2(C). As in Nagel-

Stein [NS01], the spectral theorem for unbounded operators (see [Rud91]) proves:

Theorem 3.1. The operators �τp and �̃τp are each the infintesimal generator of a

strongly continuous semigroup of bounded operators on L2(C), e−s�τp and e−s
e�τp respec-

tively for s > 0. For f ∈ L2(C), the following hold:

(a) lim
s→0

‖e−s�τpf − f‖L2(C) = 0 and lim
s→0

‖e−se�τpf − f‖L2(C) = 0;

(b) For s > 0, these operators are contractions, that is,

‖e−s�τpf‖L2(C) ≤ ‖f‖L2(C) and ‖e−se�τpf‖L2(C) ≤ ‖f‖L2(C);

(c) For f ∈ Dom(�τp) and f̃ ∈ Dom(�̃τp),

‖e−s�τpf−f‖L2(C) ≤ s‖�τpf‖L2(C) and ‖e−se�τpf−f‖L2(C) ≤ s‖�̃τpf‖L2(C);

(d) For s > 0 and all j, Range(e−s�τp) ⊂ Dom(�j
τp) and Range(e−s

e�τp) ⊂ Dom(�̃j
τp).

Also, �j
τpe

−s�τp and �̃j
τpe

−se�τp are bounded operators on L2(C) with

‖�j
τpe

−s�τpf‖L2(C) ≤
(
j

e

)
s−j‖f‖L2(C)

and

‖�̃j
τpe

−se�τpf‖L2(C) ≤
(
j

e

)
s−j‖f‖L2(C);

(e) For any f ∈ L2(C) and s > 0, the Hilbert space valued functions u(s) = e−s�τpf

and ũ(s) = e−s
e�τpf satisfy (

∂

∂s
+ �τp

)
u(s) = 0
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and

(
∂

∂s
+ �̃τp

)
ũ(s) = 0,

respectively;

(f) For every f ∈ L2(C),

e−s
e�τpSτp[f ] = Sτpe

−se�τp [f ] = Sτp[f ];

and consequently,

(g) For all f ∈ L2(C)

e−s
e�τp [f ] = (I − Sτp)e

−se�τp [f ] + Sτp[f ] = e−s
e�τp(I − Sτp)[f ] + Sτp[f ].

3.2 Regularity of the Heat Kernels

For each s > 0, define bounded operators Hs
τp : L2(C) → L2(C) and H̃s

τp : L2(C) →

L2(C) by

Hs
τp[f ] = e−s�τp [f ]

and

H̃s
τp[f ] = e−s�τp [f ].

The analysis of H̃s
τp is inherently more complicated than that of Hs

τp because ker �̃τp =

ker Z̄τp which is large while ker �τp = {0}. Also,

lim
s→∞

e−s
e�τp = Sτp,
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so there is no chance that ∫ ∞

0

e−s
e�τp [f ](z) ds

converges. To overcome this problem, we define a related operator G̃s
τp : L2(C) → L2(C)

by

G̃s
τp[f ] = (I − Sτp)e

−se�τp [f ].

Theorem 3.2. There are functions Hτp, G̃τp ∈ C∞((0,∞) × C × C
)

so that for all

f ∈ L2(C),

Hs
τp[f ](z) =

∫
C
Hτp(s, z, w)f(w) dw (3.3)

and

G̃s
τp[f ](z) =

∫
C
G̃τp(s, z, w)f(w) dw. (3.4)

Moreover, for each fixed s > 0 and z ∈ C, the functions w 7→ Hτp(s, z, w) and w 7→

G̃τp(s, z, w) are in L2(C), so the integrals defined in equations (3.3) and (3.4) converge

absolutely. Also,

(a) Hτp(s, z, w) = Hτp(s, w, z) and G̃τp(s, z, w) = G̃τp(s, w, z).

(b) For (s, z, w) ∈ (0,∞)× C× C,(
∂

∂s
+ �τp,z

)
[Hτp](s, z, w) =

(
∂

∂s
+ �#

τp,w

)
[Hτp](s, z, w) = 0

and

(
∂

∂s
+ �̃τp,z

)
[G̃τp](s, z, w) =

(
∂

∂s
+ �̃#

τp,w

)
[G̃τp](s, z, w) = 0.
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(c) For any integers j, k ≥ 0,

�j
τp,z(�

#
τp,w)kHτp(s, z, w) = �j+k

τp,zHτp(s, z, w) = (�#
τp,w)j+kHτp(s, z, w)

and

�̃j
τp,z(�̃

#
τp,w)kG̃τp(s, z, w) = �̃j+k

τp,zG̃τp(s, z, w) = (�̃#
τp,w)j+kG̃τp(s, z, w).

(d) For all integers j and multiindices α, β, the functions

w 7−→ ∂j

∂sj
Xα
z U

β
wHτp(s, z, w)

and

w 7−→ ∂j

∂sj
Xα
z U

β
wG̃τp(s, z, w)

are in L2(C) and there is a constant cj,α,β so that for R < Rτp(z),

∥∥ ∂j
∂sj

Xα
z U

β
wHτp(s, z, ·)

∥∥
L2(C)

≤ Cα,β,j
R

s−
α+β

2
−j(1 + s−1)

and

∥∥ ∂j
∂sj

Xα
z U

β
wG̃τp(s, z, ·)

∥∥
L2(C)

≤ Cα,β,j
R

s−
α+β

2
−j(1 + s−1).

(e) The conclusions of (d) hold with the roles of z and w interchanged.

(f) For each fixed s > 0, w ∈ C, and any nonnegative j ∈ Z, the function z 7→

�̃j
τp,zG̃τp(s, z, w) is orthogonal to the null space of Z̄τp.

We know Sτp(z, w) ∈ C∞(C × C) and �̃τpSτp = Sτp�̃τp = 0. Also the decay esti-

mates for Sτp(z, w) and Rτp(z, w) from [Chr91a] combined with Theorem 3.2 give us the

corollary:
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Corollary 3.3. There is a function H̃τp ∈ C∞((0,∞)× C× C) so that

H̃s
τp[f ](z) =

∫
C
H̃τp(s, z, w)f(w) dw.

Moreover, for each fixed s > 0 and z ∈ C, the function w 7→ H̃τp(s, z, w) and is in

L2(C), so the integral converges absolutely. Also,

(a) H̃τp(s, z, w) = H̃τp(s, w, z) and

(b) For (s, z, w) ∈ ((0,∞)× C× C),(
∂

∂s
+ �̃τp,z

)
[H̃τp](s, z, w) =

(
∂

∂s
+ �̃#

τp,w

)
[H̃τp](s, z, w) = 0

(c) For any integers j, k ≥ 0,

�̃j
τp,z(�̃

#
τp,w)kH̃τp(s, z, w) = �̃j+k

τp,zH̃τp(s, z, w) = (�̃#
τp,w)j+kH̃τp(s, z, w).

(d) For all integers j and multiindices α, β, the functions

w 7−→ ∂j

∂sj
Xα
z U

β
wH̃τp(s, z, w)

is in L2(C) and there is a constant Cj,α,β so that for R < Rτp(z),

∥∥ ∂j
∂sj

Xα
z U

β
wH̃τp(s, z, ·)

∥∥
L2(C)

≤ Cα,β,j
R

s−
α+β

2
−j(1 + s−1)

(e) The conclusions of (d) hold with the roles of z and w interchanged.

3.3 Properties of OPF Operators

To prove Theorem 3.2, we need to establish properties of OPF operators. We follow the

line of argument for NIS operators in [NRSW89, NS01]. Since we are working with a

fixed polynomial p, we omit τp from subscripts when the application is clear.
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Lemma 3.4. Let Aτ and Bτ be order 0 OPF operators, and let X = X1 or X2. There

exists order 0 OPF operators A1, A2 and B1 and B2 so that

XAτ = A1X1 + A2X2

BτX = X1B1 +X2B2

Proof. We know from results about NIS operators that X2
1 + X2

2 is invertible with an

inverse K NIS smoothing of order 2. Thus, by Theorem 2.9, we can write

XAτ =
(
XAτX1

)
X1 +

(
XAτKτX2

)
X2 = A1X1 + A2X2.

Similarly,

BτX = X1

(
X1KτBτX

)
+X2

(
X1KτBτX

)
= X1B1 +X1B2.

Corollary 3.5. Let Aτ and Bτ be order 0 OPF operators and α a multiindex where

|α| = k ≥ 1. There exists a finite set I of multiindices αi, |αi| = k, and order 0 OPF

operators Ai and Bi so that

XαAτ =
∑
αi∈I

AiX
αi

BτX
α =

∑
αi∈I

XαiBi

Proof. Induction.

Recall [n] denotes the greatest integer less than or equal to n.

Proposition 3.6. Let α be a multiindex.
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(a) If |α| is even, threre exists order 0 OPF operators Aτ and Ãτ so that

Xα = �
|α|
2
τp Aτ

and

(I − Sτp)X
α = �̃

|α|
2
τp Ãτ .

(b) If |α| is odd, there exist order 0 OPF operators A1, Ã1, A2 and Ã2 so that

Xα = �
[
|α|
2

]
τp (X1A1 +X2A2)

and

(I − S)Xα = �̃
[
|α|
2

]
τp (X1Ã1 +X2Ã2)

Proof. Proof by induction. We know from [Chr91a] that �τp is invertible with inverse

Gτp. From [NS01], and Theorem 1.2 we know �̃τp has a relative fundamental solution

G̃τp. Gτp and G̃τp are families of order 2. Suppose |α| = 2. Then

Xα = �τpGτpX
α = �τpAτ .

Similarly,

(I − Sτp)X
α = �̃τpG̃τpX

α = �̃τpÃτ .

Now assume |α| = 2k + 2 and Xα = XβXγ where |β| = 2 and γ = 2k. Using the

induction hypothesis and Corollary 3.5, we have

XβXγ = �τpGτpX
βXγ = �τpBτX

γ

= �τp

∑
αi∈I
|αi|=2k

XαiBi = �τp�
k
τp

(∑
αi∈I

Bαi
Bi

)
.

Using the fact that I − Sτp = �̃τp(I − Sτp)G̃τp and �̃τpSτp = 0 the argument follows

analogously to show (I − Sτp)X
α = �̃

|α|
2
τp Ãτ . The case |α| is odd follows immediately

from the even case and Lemma 3.4.
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Proposition 3.7. Let α be a multiindex.

(a) If |α| is even, threre exists order 0 OPF operators Bτ and B̃τ so that

Xα = Bτ�
|α|
2
τp

and

(I − Sτp)X
α = B̃τ �̃

|α|
2
τp .

(b) If |α| is odd, there exist order 0 OPF operators B1, B̃1, B2 and B̃2 so that

Xα = �
[
|α|
2

]
τp (B1X1 +B2X2)

and

Xα(I − S) = �̃
[
|α|
2

]
τp (B̃1X1+̃B̃2X2)

(c) Alternatively, if |α| is odd and Xα = XβX where X = X1 or X2, then there exists

an order 0 OPF operator Bτ so that

Xα = Bτ�
|β|
2
τp X

Proof. The proof is almost identical to the proof of Proposition 3.6.

Proposition 3.8. Let X = X1 or X2. There is a constant C so that if ϕ ∈ C∞
c (C),

then for all r > 0

‖X[ϕ]‖L2(C) ≤ C(r‖�τpϕ‖L2(C) + r−1‖ϕ‖L2(C))

and

‖X(I − Sτp)[ϕ]‖L2(C) ≤ C(r‖�̃τpϕ‖L2(C) + r−1‖ϕ‖L2(C)).
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Proof. First, (I − Sτp)[ϕ] and both X(I − Sτp)[ϕ] and X2(I − Sτp)[ϕ] are in L2(C). To

see this, we observe that X2ϕ ∈ C∞
c (C). Also, the Szegö kernel is C∞ (see [Chr91a]) and

the integral is taken over suppϕ, a compact set. Thus, we can differentiate inside the

integral and X2Sτp[ϕ] ∈ C∞(C). First, note that X∗ = −X. Then using Proposition

3.7, we compute

‖X(I − Sτp)[ϕ]‖2L2(C) = −
(
X2(I − Sτp)[ϕ], (I − Sτp)[ϕ]

)
≤
∣∣∣(Ã�̃τp[ϕ], (I − Sτp)ϕ

)∣∣∣
≤ ‖Ã�̃τp[ϕ]‖L2(C)‖(I − Sτp)[ϕ]‖L2(C) ≤ C‖�̃τp[ϕ]‖L2(C)‖(I − Sτp)[ϕ]‖L2(C)

≤ C
(
r2‖�̃τpϕ‖2L2(C) + r−2‖(I − Sτp)ϕ‖2L2(C)

)
.

Similarly,

‖X[ϕ]‖2
L2(C) =

(
X[ϕ], X[ϕ]

)
= −

(
X2[ϕ], ϕ

)
≤
∣∣(A�τp[ϕ], ϕ

)∣∣ ≤ C
(
r2‖�τpϕ‖2

L2(C) + r−2‖ϕ‖2
L2(C)

)
.

Corollary 3.9. Let α be a multiindex. There exists a constant C|α| so that if ϕ ∈ C∞
c (C),

then

‖Xα[ϕ]‖L2(C) ≤ Cα

[
|α|
2

]+1∑
j=0

‖�j
τp[ϕ]‖L2(C)

and

‖Xα(I − Sτp)[ϕ]‖L2(C) ≤ Cα

[
|α|
2

]+1∑
j=0

‖�̃j
τp[ϕ]‖L2(C)

Proof. Proof by induction. The base case is Proposition 3.8 and the inductive step is a

repetition of the argument in the proof of Proposition 3.8.

We now prove our first Sobolev type theorem.
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Theorem 3.10. Let

Rτp(z) = inf
j,k≥0

1

|τazjk|
1

j+k

There is a constant C > 0 so that if f ∈ C∞(C), z ∈ C and 0 < R < Rτp(z),

sup
D(z,r)

|f | ≤ C

R

∑
|α|≤2

R|α|‖Xαf‖L2(D(z,2R)).

If f ∈ C∞(C) ∩ L2(C), then

sup
D(z,r)

|f | ≤ C

R

(
‖f‖L2(D(z,2R)) +R2‖�τpf‖L2(D(z,2R))

)
Also, if f ∈ C∞(C) ∩ L2(C) and f ∩

(
ker �̃τp

)⊥
, then

sup
D(z,r)

|f | ≤ C

R

(
‖f‖L2(D(z,2R)) +R2‖�̃τpf‖L2(D(z,2R))

)
Proof. Let f ∈ C∞(C) and z ∈ C. Let χ ∈ C∞

c (C), χ ≡ 1 on D(0, 1), 0 ≤ χ ≤ 1, and

χ(z) ≡ 0 if |z| ≥ 2. Let g(z) = f(z)χ(z − z0). Then

sup
D(z0,1)

|f(z)| ≤ sup
C
|g| ≤

∫
C
|ĝ(ξ)| dξ

≤ ‖(1 + |ξ|4)
1
2 ĝ(ξ)‖L2(C)‖(1 + |ξ|4)−

1
2‖L2(C)

≤ C
(
‖ĝ‖L2(C) + ‖|ξ|2ĝ‖L2(C)

)
≤ C

(
‖g‖L2(C) + ‖4g‖L2(C)

)
≤
∑
|α|≤2

‖Dαf‖L2(D(z0,2)).

A change of variables argument shows

sup
D(z0,R)

|f(z)| ≤ C

R

∑
|α|≤2

R|α|‖Dαf(z)‖L2(D(z0,2R)). (3.5)

To pass from ordinary derivatives to products of Zτp and Z̄τp, first observe that if



62

|w − z| < R < Rτp(z) then

∣∣∣∣τ ∂j+kp∂zj∂z̄k
(w)

∣∣∣∣ =

∣∣∣∣∣∣∣τ
∑

0≤j′≤j
0≤k′≤k

1

(j − j′)!(k − k′)!

∂j
′+k′p

∂zj′∂z̄k′
(z)(w − z)j−j

′
(w − z)

k−k′

∣∣∣∣∣∣∣
≤ Cτ

Rj+k

∑
0≤j′≤j
0≤k′≤k

∣∣∣∣ ∂j′+k′p∂zj′∂z̄k′
(z)

∣∣∣∣Rj′+k′ ≤ C

Rj+k
,

where C does not depend on p and R. The proof of the first part of the theorem now

follows easily since ∂f
∂z̄

(w) = Z̄τpf(w)− τ ∂p
∂z̄

(w)f(w), which means

∣∣∣∣∂f∂z̄ (w)

∣∣∣∣ ≤ |Z̄τpf(w)|+ C

R
|f(w)|

and similarly for
∣∣∂f
∂z

(w)
∣∣. Second derivatives are in the same fashion. For example,∣∣∣∣ ∂2f

∂z∂z̄
(w)
∣∣∣∣

=
∣∣∣Z̄τpZτp[f ](w)− τ ∂p(w)

∂z̄
∂f(w)
∂z + τ2 ∂p(w)

∂z̄
∂p(w)
∂z f(w) + τ ∂p(w)

∂z
∂f(w)
∂z̄ + τ ∂

2p(w)
∂z∂z̄ f(w)

∣∣∣
≤ |Z̄τpZτp[f ](w)|+ C

R
|∇f(w)|+ C

R2
|f |.

The other second derivatives of f are handled similarly. Thus, every term in (3.5) is

well controlled by Zτp and Z̄τp derivatives. The proof of the latter parts of the theorem

follows from Proposition 3.7 and Proposition 3.8.

Remark 3.11. In Theorem 3.10, if ∂jp
∂zj (z) = ∂jp

∂z̄j (z) = 0 for j = 0, 1, . . . , 2m, then

Rτp(z) = µ(z, 1
τ
), a fact which will be useful later.

Our second Sobolev type theorem is:

Theorem 3.12. If f ∈ C∞(R× C) and BR×C
(
(s, z), r

)
= {(s′, z′) ∈ R× C : |s′ − s| ≤

r2, |z′ − z| ≤ r}, then for 0 < R < R(z), there is a constant C > 0 so that

sup
BR×C((s,z),R)

|f | ≤ C

R2

∑
|α|+2j≤4

R2j+|α|
∥∥∥∥ ∂j∂sjXαf

∥∥∥∥
L2(BR×C((s,z),2R)

.
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If f ∈ C∞(R× C) and f(s, ·) ∈ L2(C) for each s, then

sup
BR×C((s,z),R)

|f | ≤ C

R2

∑
k+j≤2

R2(j+k)‖ ∂
k

∂sk
�j
τpf‖L2(BR×C((s,z),2R).

Also, if f ∈ C∞(R× C) and f(s, ·) ∈ L2(C) ∩
(
ker �̃τp

)⊥
for each s, then

sup
BR×C((s,z),R)

|f | ≤ C

R2

∑
k+j≤2

R2(j+k)‖ ∂
k

∂sk
�̃j
τpf‖L2(BR×C((s,z),2R).

Proof. The proof of Theorem 3.12 is similar to the proof of Theorem 3.10.

3.4 Proof of Theorem 3.2

To prove Theorem 3.2, we need some a priori estimates.

Lemma 3.13. There are constants Cα,β so that for any multiindices α and β, any s > 0,

and ϕ ∈ C∞
c (C),

‖XαHs
τp[X

βϕ]‖L2(C) ≤ Cα,βs
− |α|+|β|

2 ‖ϕ‖L2(C)

and

‖XαG̃s
τp[X

βϕ]‖L2(C) ≤ Cα,βs
− |α|+|β|

2 ‖ϕ‖L2(C).

Proof. We first assume that |α| and |β| are even. From Proposition 3.6, there exists an

order 0 OPF operator Ãτ so that

G̃s
τp[X

βϕ] = e−s
e�τp(I − Sτp)[X

βϕ] = G̃s
τp(I − Sτp)[X

βϕ] = G̃s
τp�̃

|β|
2
τp Ãϕ.

Hence, we have by Proposition 3.7 and Theorem 3.1 (d) an order zero family B̃τ so that

‖XαG̃s
τp[X

βϕ]‖L2(C) = ‖Xα(I − Sτp)�̃
|β|
2
τp G̃

s
τp[Ãτϕ]‖L2(C)

= ‖B̃τ �̃
|α|
2
τp �̃

|β|
2
τp G̃

s
τp[Ãτϕ]‖L2(C)

≤ Cα,βs
− |α|+|β|

2 ‖ϕ‖L2(C).
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The |α| and |β| odd cases follow easily from the even case, an application of Proposition

3.6 and Proposition 3.7 and the following two arguments. One, if X is either X1 or X2

then from Proposition 3.8 with r = s
1
2

‖XG̃τpϕ‖L2(C) = ‖X(I − Sτp)G̃τpϕ‖L2(C) ≤ C
(
s

1
2‖�̃τpG̃

s
τpϕ‖L2(C) + s−

1
2‖G̃s

τpϕ‖L2(C)

)
≤ Cs−

1
2‖ϕ‖L2(C).

Two, since X∗ = −X, applying the previous inequality to G̃s
τpXϕ, we have

‖G̃s
τpXϕ‖2

L2(C) =
(
G̃s
τpXϕ, G̃

s
τpXϕ

)
= −

(
ϕ,XG̃s

τpG̃
s
τpXϕ

)
≤ ‖ϕ‖L2(C)‖XG̃s

τpG̃
s
τpXϕ‖L2(C) ≤ Cs−

1
2‖ϕ‖L2(C)‖G̃s

τpXϕ‖L2(C).

The estimates for Hs
τp follow analogously.

Since (Xj)
∗ = −Xj, j = 1, 2, we have the immediate corollary:

Corollary 3.14. There are constants Cα,β so that for any multiindices α and β, any

s > 0, and ϕ ∈ C∞
c (C),

‖XαHs
τp[
(
Xβ
)∗
ϕ]‖L2(C) ≤ Cα,βs

− |α|+|β|
2 ‖ϕ‖L2(C)

and

‖XαG̃s
τp[
(
Xβ
)∗
ϕ]‖L2(C) ≤ Cα,βs

− |α|+|β|
2 ‖ϕ‖L2(C).

Lemma 3.15. For s > 0 and f ∈ L2(C), Hs
τp[f ] and G̃s

τp[f ] are C∞(C). Given a

multiindex γ, there is a constant C|γ| so that for z ∈ C and R < min{Rτp(z), 1} where

Rτp(z) is the constant from Theorem 3.10,

|XγHs
τp[f ](z)| ≤ C|γ|R

−1s−
|γ|
2 (1 + s−1)‖f‖L2(C)
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and

|XγG̃s
τp[f ](z)| ≤ C|γ|R

−1s−
|γ|
2 (1 + s−1)‖f‖L2(C).

Proof. We can find ϕn ∈ C∞
c (C) so that ϕn → f in L2(C). It follows immediately from

Lemma 3.13 that XγHs
τp[f ], XγG̃s

τp[f ] ∈ L2(C), and

XγHs
τp[ϕn] → XγHs

τp[f ]

and

XγG̃s
τp[ϕn] → XγG̃s

τp[f ]

in L2(C), hence

‖XγHs
τp[f ]‖L2(C) ≤ C|γ|R

−1s−
|γ|
2 ‖f‖L2(C)

and

‖XγG̃s
τp[f ]‖L2(C) ≤ C|γ|R

−1s−
|γ|
2 ‖f‖L2(C).

From these inequalities, we can show that all Zτp and Z̄τp derivatives of Hs
τp[f ] and

G̃s
τp[f ] are in L2(C). To pass from L2-bounds of Zτp and Z̄τp derivatives to a local

L2-bound for ordinary derivatives, we can repeat the argument of Theorem 3.10. Thus,

Hs
τp[f ] and G̃s

τp[f ] are C∞(C), and by Theorem 3.10,

sup
D(z,R)

|XγHs
τp[f ]| ≤ C

R

∑
|α|≤2

R|α|‖XαXγHs
τp[f ]‖L2(C)

≤ C

R

∑
|α|≤2

s−
|α|+|γ|

2 ‖f‖L2(C)

≤ C|γ|R
−1s−

|γ|
2 (1 + s−1)‖f‖L2(C).
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Similarly,

sup
D(z,R)

|XγG̃s
τp[f ]| ≤ C|γ|R

−1s−
|γ|
2 (1 + s−1)‖f‖L2(C).

Recall the following standard fact.

Lemma 3.16. If x1 7→ ∂αx1
f(x1, x2) and x2 7→ ∂αx2

f(x1, x2) are in L2
loc(Rn) for all mul-

tiindices α, then f ∈ C∞(Rn × Rn).

Proof. Smoothness is a local property, so we can assume f has compact support. Then

∂αx1
f and ∂βx2

f are in L2(Rn × Rn) for all multiindices α and β. By the Plancherel

Theorem, if ξ and η are the transform variables of x1 and x2 respectively, then

‖∂αx1
∂βx2

f‖L2(Rn×Rn) = c‖ξαηβ f̂‖L2(Rn×Rn) ≤ c‖(|ξ|α+β + |η|α+β)f̂‖L2(Rn×Rn) <∞.

The result follows by the Sobolev Embedding Theorem.

Proof (Theorem 3.2). For z ∈ C and multiindex α, Lemma 3.15 shows that the func-

tionals on L2(C) defined by

f(z) 7→ ∂αHs
τp[f ](z)

and

f(z) 7→ ∂αG̃s
τp[f ](z)

are bounded. By the Riesz Representation Theorem, a consequence of these facts is the

existence of functions Hα,s,z
τp (w) and G̃α,s,z

τp (w) so that

∂αHs
τp[f ](z) =

∫
C
Hα,s,z
τp (w)f(w) dw



67

and

∂αG̃s
τp[f ](z) =

∫
C
G̃α,s,z
τp (w)f(w) dw.

Define Hα
τp(s, z, w) = Hα,s,z

τp (w) and G̃α
τp(s, z, w) = G̃α,s,z

τp (w). Also set Hτp(s, z, w) =

H0
τp(s, z, w) and G̃τp(s, z, w) = G̃0

τp(s, z, w). Then Hα
τp and G̃α

τp are functions on (0,∞)×

C×C with the property that w 7→ Hα
τp(s, z, w) and w 7→ G̃α

τp(s, z, w) are in L2(C). Thus,

we have

Hs
τp[f ](z) =

∫
C
Hτp(s, z, w)f(w) dw (3.6)

and

G̃s
τp[f ](z) =

∫
C
G̃τp(s, z, w)f(w) dw, (3.7)

and for every derivative ∂αz ,

∂αz

(∫
C
Hτp(s, z, w)f(w) dw

)
=

∫
C
Hα
τp(s, z, w)f(w) dw

and

∂αz

(∫
C
G̃τp(s, z, w)f(w) dw

)
=

∫
C
G̃α
τp(s, z, w)f(w) dw.

We will show that ∂αzHτp(s, z, w) = Hα
τp(s, z, w) and ∂αz G̃τp(s, z, w) = G̃α

τp(s, z, w). To

do this, we use the Schwartz Kernel Theorem. Let ϕ, ψ ∈ C∞(C). By the Schwartz

Kernel Theorem,

〈∂αzHs
τp[ψ], ϕ〉C = 〈(−1)|α|Hs

τp[ψ], ∂αz ϕ〉C = 〈(−1)|α|Hs
τp, ψ ⊗ ∂αz ϕ〉C×C

= 〈∂αzHs
τp, ψ ⊗ ϕ〉C×C = 〈(∂αzHs

τp)[ψ], ϕ〉C.
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Thus, we have shown

∂αzHτp(s, z, w) = Hα
τp(s, z, w) (3.8)

and

∂αz G̃τp(s, z, w) = G̃α
τp(s, z, w) (3.9)

in D′(C) and w 7→ ∂αzHτp(s, z, w) and w 7→ ∂αz G̃τp(s, z, w) are L2(C) functions.

Next, we know that Hs
τp and G̃s

τp are self-adjoint, so∫
C
Hs
τp[ψ](z)ϕ(z) dz =

∫
C
ψ(w)Hs

τp[ϕ](w) dw

and

∫
C
G̃s
τp[ψ](z)ϕ(z) dz =

∫
C
ψ(w)G̃s

τp[ϕ](w) dw.

As an immediate consequence of these equalities and (3.6) and (3.7), we have∫
C

∫
C
Hτp(s, z, w)ψ(w)ϕ(z) dwdz =

∫
C

∫
C
Hτp(s, w, z)ψ(w)ϕ(z) dzdw

and

∫
C

∫
C
G̃τp(s, z, w)ψ(w)ϕ(z) dwdz =

∫
C

∫
C
G̃τp(s, w, z)ψ(w)ϕ(z) dzdw

It follows that Hτp(s, z, w) = Hτp(s, w, z) and G̃τp(s, z, w) = G̃τp(s, w, z), conclusion (a).

As a consequence of (a) and the fact that w 7→ Hs
τp(s, z, w) belongs to L2(C), z 7→

Hs
τp(s, z, w) belongs to L2(C). By equations (3.8), and (3.9), it follows that every z

derivative also belongs to L2. Thus by Lemma 3.16, Hτp(s, z, w) and G̃τp(s, z, w) are

C∞(C× C) for fixed s > 0.
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Next, Sτp�̃j
τpe

−se�τp(I − Sτp) = 0 and Sτp is self-adjoint, so it follows that for all

ϕ, ψ ∈ C∞
c (C), ∫

C

∫
C

�̃j
τp,zG̃τp(s, z, w)ϕ(w)Sτp[ψ](z) dwdz = 0.

Hence for fixed s and w, Sτp[�̃j
τp,zG̃τp(s, ·, w)] = 0. thus, z 7→ �̃j

τp,zG̃τp(s, z, w) is in the

compliment of the null space Zτp. This proves (f).

We know �j
τpH

s
τp = Hs

τp�
j
τp. The implication of the self-adjointness of �τp is that

on the kernel side,

�j
τp,zHτp(s, z, w) = (�#

τp,w)jHτp(s, z, w).

From this, (c) follows quickly because �j+k
τp,zH

s
τp = �j

τp,zH
s
τp�

k
τp,w. A similar argument

shows �̃j
τp,zG̃τp(s, z, w) = (�̃∗

τp,w)jG̃τp(s, z, w) which finishes the proof of (c).

Next, by Theorem 3.1 (e),
(
∂
∂s

+ �τp

) [
Hs
τp[f ]

]
(z) = 0 and

(
∂
∂s

+ �̃τp

) [
G̃s
τp[f ]

]
(z) =

( ∂
∂s

+ �τp)(I − Sτp)
[
e−s

e�τp [f ]
]
(z) = 0. Fixing z ∈ C, integration against test functions

in (0,∞)× C shows that in D′((0,∞)× C
)
,

0 =

〈(
∂

∂s
+ �τp

)[
Hs
τp[f ]

]
(z), ϕ

〉
=

∫∫
(0,∞)×C

Hτp(s, z, w)

(
− ∂

∂s
+ �#

τp,z

)
ϕ(s, z)f(w) dwds

=

∫∫
(0,∞)×C

(
∂

∂s
+ �τp,z

)
Hτp(s, z, w)ϕ(s, z)f(w) dwds.

Similarly,
∫∫

(0,∞)×C( ∂
∂s

+ �̃τp,z)G̃τp(s, z, w)ϕ(s, z)f(w) dwds = 0. Thus, ∂
∂s
Hτp(s, z, w) =

−�τp,zHτp(s, z, w) and ∂
∂s
G̃τp(s, z, w) = −�̃τp,zG̃τp(s, z, w). Then we have

∂2

∂s2
Hτp(s, z, w) = − ∂

∂s
�τp,zHτp(s, z, w) = −�τp,z

∂

∂s
Hτp(s, z, w) = �2

τp,zHτp(s, z, w).

Iterating this argument shows (with an identical argument for G̃τp(s, z, w))

∂j

∂sj
Hτp(s, z, w) = (−1)j�j

τp,zHτp(s, z, w) (3.10)
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and

∂j

∂sj
G̃τp(s, z, w) = (−1)j�̃j

τp,zG̃τp(s, z, w) (3.11)

We know, however, that �j
τp,zHτp(s, z, w) and �̃j

τp,zG̃τp(s, z, w) are both L2
loc

(
(0,∞) ×

C×C
)
. As before, this is enough to show Hτp, G̃τp ∈ C∞((0,∞)×C×C

)
. In particular,

(3.10) and (3.11) hold in the classical sense, so (b) is proved.

For α, β, and j, Lemma 3.13 shows that there is a constant Cα,β,j so that for ϕ ∈

C∞
c (C), ∥∥∥Xα�j

τpH
s
τp

[
Xβ[ϕ]

]∥∥∥
L2(C)

≤ Cα,βs
− |α|+|β|

2
−j‖ϕ‖L2(C)

and

∥∥∥Xα�̃j
τpG̃

s
τp

[
Xβ[ϕ]

]∥∥∥
L2(C)

≤ Cα,βs
− |α|+|β|

2
−j‖ϕ‖L2(C).

Then by Theorem 3.10, for R < Rτp(z),

sup
D(z,R)

∣∣Xα�j
τpH

s
τp

[
Xβ[ϕ]

]∣∣ ≤ C

R

∑
|γ|≤2

R|γ|
∥∥∥Xα+γ�̃j

τpG̃
s
τp

[
Xβ[ϕ]

]∥∥∥
L2(C)

≤ C

R
s−

α+β
2
−j(1 + s−1)‖ϕ‖L2(C).

Similarly,

sup
D(w,R)

∣∣Xα�̃j
τpG̃

s
τp

[
Xβ[ϕ]

]∣∣ ≤ C

R
s−

α+β
2
−j(1 + s−1)‖ϕ‖L2(C).

Also, since Hτp(s, z, w) ∈ C∞((0,∞)× C× C),

Xα�j
τpH

s
τp[X

βϕ](z) =

∫
C
Xα
z �j

τpHτp(s, z, w)Xβ
wϕ(w) dw

=

∫
C
Xα
z U

β
w�j

τpHτp(s, z, w)ϕ(w) dw

= (−1)j
∫

C

∂j

∂sj
Xα
z U

β
wHτp(s, z, w)ϕ(w) dw.
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From the reverse Hölder inequality and our previous estimate,(∫
C

∣∣∣∣ ∂j∂sjXα
z U

β
wHτp(s, z, w)

∣∣∣∣2 dw
) 1

2

≤ Cα,β,j
R

s−
α+β

2
−j(1 + s−1)

and similarly for ∂j

∂sjX
α
z (Xw)βG̃τp(s, z, w). This is (d) of the Theorem. From (a), we can

interchange the roles of z and w to prove (e). This proves the theorem.

3.5 Fundamental Solutions for Hτp and H̃τp on R×C

3.5.1 Distributions on R× C

3.5.2 A Fundamental Solution for Hτp and a Relative Funda-

mental Solution for H̃τp on R× C

Define distributions Hz
τp, H̃

z
τp, and G̃z

τp on R× C by

Definition 3.17. For ψ ∈ C∞
c (R× C), set

〈Hz
τp, ψ〉 = lim

ε→0

∫ ∞

ε

∫
C
Hτp(s, z, w)ψ(s, w) dwds,

〈H̃z
τp, ψ〉 = lim

ε→0

∫ ∞

ε

∫
C
H̃τp(s, z, w)ψ(s, w) dwds,

and

〈G̃z
τp, ψ〉 = lim

ε→0

∫ ∞

ε

∫
C
G̃τp(s, z, w)ψ(s, w) dwds,
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The kernels of these distributions are

Hz
τp(s, w) =


Hτp(s, z, w) if s > 0

0 if s ≤ 0

H̃z
τp(s, w) =


H̃τp(s, z, w) if s > 0

0 if s ≤ 0

and

G̃z
τp(s, w) =


G̃τp(s, z, w) if s > 0

−Sτp(z, w) if s ≤ 0

For the last equality, it is helpful to recall that G̃τp(s, z, w) = H̃τp(s, z, w) − Sτp(z, w).

Also, to prove that G̃z
τp exists, it is enough to show that H̃z

τp exists.

We are going to use Theorem 3.1 and Theorem 3.10 to obtain pointwise bounds on

|e−s�τpf − f | and |e−se�τpg − g|.

Lemma 3.18. There is a constant depending only on the degree of p so that if f ∈

Dom(�j
τp) and g ∈ Dom(�̃j

τp) for j ≤ 2 then for any z ∈ C and 0 < R < Rτp(z) and

z ∈ C,

sup
D(z,R)

∣∣f(w)− e−s�τp [f ](w)
∣∣ ≤ C

s

R

(
R2‖�τp[f ]‖L2(C) +R4‖�2

τp[f ]‖L2(C)

)
and

sup
D(z,R)

∣∣g(w)− e−s
e�τp [g](w)

∣∣ ≤ C
s

R

(
R2‖�̃τp[f ]‖L2(C) +R4‖�̃2

τp[f ]‖L2(C)

)
.
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Proof. Let g ∈ Dom(�̃j
τp), 0 ≤ j ≤ 2. Let g̃ = (I − Sτp)[g]. Then g̃ ∈ Dom(�̃j

τp),

0 ≤ j ≤ 2. Using Theorem 3.1, we have

g̃ − e−s
e�τp g̃ = (I − Sτp)g − e−s

e�τp(I − Sτp)[g]

= g − e−s
e�τp [g]− (e−s

e�τpSτp[g]− Sτp[g]) = g − e−s
e�τp [g].

Thus, by Theorem 3.10 and Theorem 3.1 (c) and the fact g̃ − e−s
e�τpg is orthogonal to

ker(�̃τp), we have

sup
D(z,R)

∣∣g(w)− e−s
e�τp [g](w)

∣∣ = sup
D(z,R)

∣∣g̃(w)− e−s
e�τp [g̃](w)

∣∣
≤ C

1

R

1∑
j=0

R2j
∥∥�̃j

τp[g̃]− �̃j
τp[e

−se�τp g̃]
∥∥
L2(C)

=
C

R

1∑
j=0

R2j
∥∥(I − e−s

e�τp)[�̃j
τpg]
∥∥
L2(C)

≤ C
s

R

1∑
j=0

R2j‖�̃j+1
τp [g]‖L2(C).

A similar (but simpler) arguemnt shows the analogous result with �τp.

Lemma 3.19. For each z ∈ C, the limits Hz
τp, H̃

z
τp, and G̃z

τp exist and define distribu-

tions on R× C.

Proof. Let ψ ∈ C∞
c (R × C). Then there is a closed, bounded interval I ⊂ R and a

compact set K ⊂ C so that suppψ ∈ I ×K. Set ψs(z) = ψ(s, z). Then {ψs} ⊂ C∞
c (R)

with each element having support in K. If 0 < ε1 < ε2, then∫ ε2

ε1

Hτp(s, z, w)ψ(s, w) dw ds =

∫ ε2

ε1

e−s�τp [ψs](z) ds

=

∫ ε2

ε1

e−s�τp [ϕs](z)− ψ(s, z) ds+

∫ ε2

ε1

ψ(s, z) ds.
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From Lemma 3.18 and Hölder’s inequality, we have (with R < Rτp(z)),∣∣∣∣∫ ε2

ε1

∫
C
Hτp(s, z, w)ψ(s, w) dwds

∣∣∣∣ ≤ C
ε2
R

1∑
j=0

R2j

∫ ε2

0

‖�j+1
τp [ψs]‖L2(C) ds+ ε2‖ψ‖L∞(R×C)

≤ C
ε

3
2
2

R

1∑
j=0

‖�j+1
τp [ψ]‖L2(R×C) + ε2‖ψ‖L∞(R×C).

These last terms go to 0 as ε2 → 0, so the limit defining Hz
τp exist. Similarly, the limits

defining H̃z
τp and G̃z

τp exist.

Theorem 3.20. In D′(R× C),

(∂s + �#
τp,w)(Hz

τp) = δ0 ⊗ δz and (∂s + �̃#
τp,w)(H̃z

τp) = δ0 ⊗ δz.

Proof. Let ψ ∈ C∞
c (R× C). Then

〈(∂s + �#
τp,w)(Hz

τp), ψ〉 = 〈Hz
τp, (−∂s + �#

τp,w)ψ〉

= − lim
ε→0

∫ ∞

ε

∫
C
Hτp(s, z, w)∂sψ(s, w) dwds+ lim

ε→0

∫ ∞

ε

∫
C
Hτp(s, z, w)�τp,wψ(w, s) dwds.

Since s is bounded away from 0 and Hτp ∈ C∞((0,∞)× C× C
)
, the first term yields

−
∫ ∞

ε

∫
C
Hτp(s, z, w)

∂ψ

∂s
(s, w) dwds

= −
∫ ∞

ε

∂

∂s

∫
C
Hτp(s, z, w)ψ(s, w) dwds+

∫ ∞

ε

∫
C

∂

∂s
Hτp(s, z, w)ψ(s, w) dwds

=

∫
C
Hτp(ε, z, w)ψ(ε, w) dw +

∫ ∞

ε

∫
C

∂

∂s
Hτp(s, z, w)ψ(s, w) dwds.

Also,∫ ∞

ε

∫
C
Hτp(s, z, w)�τp,wψ(s, w) dwds =

∫ ∞

ε

∫
C

�#
τp,wHτp(s, z, w)ψ(s, w) dwds.
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Using Theorem 3.2 (b) and adding our equalities together, we have∫ ∞

ε

∫
C
−Hτp(s, z, w)∂sψ(s, w) +Hτp(s, z, w)�τp,wψ(s, w) dwds

=

∫
C
Hτp(ε, z, w)ψ(ε, w) dw +

∫ ∞

ε

∫ ∞

C
(∂s + �#

τp,w)Hτp(s, z, w)ψ(s, w) dwds

=

∫
C
Hτp(ε, z, w)ψ(ε, w) dw.

Hence

〈(∂s + �#
τp,w)[Hz

τp], ψ〉 = lim
ε→0

∫
C
Hτp(ε, z, w)ψ(ε, w) dw

= lim
ε→0

e−ε�τp [ψε](z) = ψ(0, z) = 〈δ0 ⊗ δz, ψ〉.

The identical argument shows (∂s + �̃#
τp,w)[H̃z

τp] = δ0 × δz.
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Chapter 4

Estimates on Hτp(s, z, w)

In this chapter, we prove Theorem 1.3, the result concerning pointwise estimates of

|XI
zU

J
wHτp(s, z, w)|. We begin the chapter with a study of how the heat kernel behaves

under scaling.

4.1 Scaling and the Heat Kernel

The structure of �τp is critical in this section. Expanding �τp, we have

�τp = −
(
∂

∂z̄
+ τ

∂p

∂z̄

)(
∂

∂z
− τ

∂p

∂z

)
= − ∂2

∂z∂z̄
+ τ

∂2p

∂z∂z̄
+ τ 2∂p

∂z

∂p

∂z̄
+ τ

(
∂p

∂z

∂

∂z̄
− ∂p

∂z̄

∂

∂z

)
(4.1)

= −1

4
4+

1

4
τ4p+

τ 2

4
|∇p|2 +

i

2
τ

(
∂p

∂x1

∂

∂x2

− ∂p

∂x2

∂

∂x1

)
(4.2)

Let p0(w) = p(w) and fix z0 ∈ C. Let p1(w) = p0(w + z0).

Proposition 4.1.

Hτp0(s, z + z0, w + z0) = Hτp1(s, z, w).

Proof. Fix z0 ∈ C/ Let Az0 [f ](z) = f(z − z0). Az0 is an isometry on L2(C), and
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Hτp1 [f ](z) = −1

4
4f(z) +

τ

4
4p0(z + z0)f(z) +

τ 2

4
|∇p0(z + z0)|2f(z)

+
i

2
τ

(
∂p0

∂x1

(z + z0)
∂f

∂x2

(z)− ∂p0

∂x2

(z + z0)
∂f

∂x1

(z)

)
= A−1

z0

[
− 1

4
4f(z − z0) +

τ

4
4p0(z)f(z − z0) +

τ 2

4
|∇p0(z)|2f(z − z0)

+
i

2
τ

(
∂p0

∂x1

(z)
∂f

∂x2

(z − z0)−
∂p0

∂x2

(z)
∂f

∂x1

(z − z0)

)]

= A−1
z0
Hτp0Az0 [f ](z).

Also, if ψ ∈ C∞
c (C× R),

A−1
z0

(δ0 ⊗ δz)Az0ψ(s, w) = A−1
z0
ψ(0, z − z0) = ψ(0, z),

and

A−1
z0

(δ0 ⊗ δz)Az0ψ(s, w) = A−1
z0
Hτp0

∫ ∞

0

∫
C
Hτp0(s, z, w)ψ(s, w − z0) dwds

= A−1
z0

∫ ∞

0

∫
C

( ∂
∂s

+ �τp0,z

)
Hτp0(s, z, w)ψ(s, w − z0) dwds

= A−1
z0

∫ ∞

0

∫
C

( ∂
∂s

+ �#
τp0,w

)
Hτp0(s, z, w)ψ(s, w − z0) dwds

= A−1
z0

∫ ∞

0

∫
C

( ∂
∂s

+ �#
τp1,w

)
Hτp0(s, z, w + z0)ψ(s, w − z0) dwds

=

∫ ∞

0

∫
C

( ∂
∂s

+ �#
τp1,w

)
Hτp0(s, z + z0, w + z0)ψ(s, w − z0) dwds.

Thus, Hτp0(s, z + z0, w + z0) = Hτp1(s, z, w).

The same idea but longer calculations (which we will show) prove:

Proposition 4.2. If z0 ∈ C and

pz02 (w) =
∑
j,k≥1

azjk(w − z0)
j(w − z0)

k
,
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then

Hτp
z0
2

(s, z, w) = eτiT (w,z0)Hτp1(s, z0, w).

Proof. Let Uz[f ](s, w) = eiτT (w,z)f(s, w). We use the following facts: T is harmonic in

each variable (so ∂2T
∂w∂w̄

= 0),

∂p

∂w
(w) + i

∂T

∂w
(w, z) =

∑
j,k≥1

jazjk(w − z)j−1(w − z)
k

=
∂pz2
∂w

(w),

and

∂p

∂w̄
(w)− i

∂T

∂w̄
(w, z) =

∑
j,k≥1

kazjk(w − z)j(w − z)
k−1

=
∂pz2
∂w̄

(w).

We compute

UzHτp1U
−1
z f(s, w)

=
∂f

∂s
(s, w) + Uz

[
− ∂2

∂w∂w̄
(U−1

z f(s, w)) + τ
∂2p1

∂w∂w̄
(w)U−1

z f(s, w)

+ τ2

∣∣∣∣∂p1

∂w

∣∣∣∣2 U−1
z f(s, w) + τ

(
∂p1

∂w

∂

∂w̄
(U−1

z f(s, w))− ∂p1

∂w̄

∂

∂w
(U−1

z f(s, w))
)]

=
∂f

∂s
(s, w)− ∂2f

∂w∂w̄
(s, w) + τ2 ∂T

∂w
(w, z)

∂T

∂w̄
(w, z)f(s, w) + τi

∂T

∂w
(w, z)

∂f

∂w̄
(s, w)

+ τi
∂T

∂w̄
(w, z)

∂f

∂w
(s, w) + τ

∂2p1

∂w∂w̄
(w)f(s, w) + τ2

∣∣∣∣∂p1

∂w

∣∣∣∣2 f(s, w) + τi
∂p

∂w
(w, z)

∂f

∂w̄
(s, w)

− τ2i
∂p1

∂w

∂T

∂w̄
(w, z)f(s, w)− τi

∂p

∂w̄
(w, z)

∂f

∂w
(s, w) + τ2i

∂p1

∂w̄

∂T

∂w
(w, z)f(s, w)

=
∂f

∂s
(s, w)− ∂2f

∂w∂w̄
(s, w) + τ

∂2p1

∂w∂w̄
(w)f(s, w)

+ τ2

(
∂p1

∂w̄
− i

∂T

∂w̄
(w, z)

)(
∂p1

∂w
+ i

∂T

∂w
(w, z)

)
f(s, w)

+ τ

((
∂p1

∂w
+ i

∂T

∂w
(w, z)

)
∂f

∂w̄
−
(
∂p1

∂w̄
− i

∂T

∂w̄
(w, z)

)
∂f

∂w

)
= Hτpz

2
[f ](s, w).

Observe that

U−1
z0

(δ0 ⊗ δz)Uz0ψ(s, w) = U−1
z0

(Uz0ψ(0, z)) = ψ(0, z).
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Using that Hτp
z0
2
Uz0 = Uz0Hτp1 implies Uz0H

#

τp
z0
2

= H#
τp1
Uz0 , we have

U−1
z (Hτp1H

τp1
z ψ(s, ·))U−1

z ψ = U−1
z

∫ ∞

0

∫
C

( ∂
∂s

+ �τp1,z

)
Hτp1(s, z, w)Uzψ(s, w) dwds

= U−1
z

∫ ∞

0

∫
C

( ∂
∂s

+ �#
τp1,w

)Hτp1(s, z, w)Uzψ(s, w) dwds

= U−1
z

∫ ∞

0

∫
C
Hτp1(s, z, w)

(
− ∂

∂s
+ �τp1,w

)
Uzψ(s, w) dwds

=

∫ ∞

0

∫
C
e−iτT (z,z0)Hτp1(s, z, w)eiτT (w,z0)

(
− ∂

∂s
+ �τp2,w

)
ψ(s, w) dwdw

=

∫ ∞

0

∫
C
e−iτT (z,z0)

( ∂
∂s

+ �#
τp2,w

)(
eiτT (w,z0)Hτp1(s, z, w)

)
ψ(s, w) dwds.

Thus Hτp
z0
2

(s, z0, w) = eiτT (w,z0)Hτp1(s, z0, w).

Let Tλψ(s, w) = λ2ψ(λ2s, λw) and Tλf(w) = λf(λw) act on functions on R×C and C,

respectively. In either case, Tλ is an isometry on L2. Our final proposition in this section

investigates conjugating Hτp by Tλ. Let ψλ(s, w) = ψ(λ2s, λw) and fλ(w) = f(λw).

Proposition 4.3. If pλ3 = p2(z/λ), then

1

λ2
Hτp

z0
2

(s/λ2, z/λ, w/λ) = Hτpλ
3
(s, z, w).

Proof.

T−1
λ HτpTλ[f ](s, w) = λ2T−1

λ

[
∂fλ
∂s

(s, w)− ∂2fλ
∂w∂w̄

(s, w) + τ
∂2p

∂w∂w̄
(w)fλ(s, w)

+ τ2

∣∣∣∣ ∂p∂w
∣∣∣∣2 fλ(s, w) + τ

(
∂p

∂w
(w)

∂fλ
∂w̄

(s, w)− ∂p

∂w̄
(w)

∂fλ
∂w

(s, w)
)]

= λ2T−1
λ

[
λ2∂f

∂s
(λ2s, λw)− λ2 ∂2f

∂w∂w̄
(λ2s, λw) + λ2τ

1
λ2

∂2p

∂w∂w̄
(w)f(λ2s, λw)

+ λ2τ2

∣∣∣∣ 1λ ∂p∂w
∣∣∣∣2 f(λ2s, λw) + λ2τ

(
1
λ

∂p

∂w
(w)

∂f

∂w̄
(λ2s, λw)− 1

λ

∂p

∂w̄
(w)

∂f

∂w
(λ2s, λw)

)]

= λ2

[
∂f

∂s
(s, w)− ∂2f

∂w∂w̄
(s, w) + τ

∂2pλ−1

∂w∂w̄
(w)f(s, w) + τ2

∣∣∣∣∂pλ−1

∂w

∣∣∣∣2 f(s, w)

+ τ

(
∂pλ−1

∂w
(w)

∂f

∂w̄
(s, w)− ∂pλ−1

∂w̄
(w)

∂fλ
∂w

(s, w)
)]

= λ2Hτpλ−1 [f ](s, w).



80

Thus we have

T−1
λ Hτp2 = λ2Hτpλ

3
T−1
λ .

Next,

T−1
λ (δ0 ⊗ δz)Tλ[f ] = λ2T−1

λ f(0, λz) = f(0, z),

so

T−1
λ δ0 ⊗ δzTλ[f ] = λ2T−1

λ Hτp2

∫ ∞

0

∫
C
Hτp2(s, z, w)f(λ2s, λw) dwds

= λ2T−1
λ

∫ ∞

0

∫
C

(
∂

∂s
+ �#

τp2

)
Hτp2(s, z, w)f(λ2s, λw) dwds

= T−1
λ

∫ ∞

0

∫
C
T−1
λ

( ∂
∂s

+ �#
τp2

)
Hτp2(s, z, w)f(λ2s, λw) dwds

= T−1
λ

∫ ∞

0

∫
C
T−1
λ

(
∂

∂s
+ �#

τp2

)
Hτp2(s, z, w)f(s, w) dwds

= λ2T−1
λ

∫ ∞

0

∫
C

(
∂

∂s
+ �#

τpλ
3

)(
T−1
λ Hτp2(s, z, w)

)
f(s, w) dwds

=

∫ ∞

0

∫
C

(
∂

∂s
+ �#

τpλ
3

)
1

λ2
Hτp2(s/λ

2, z/λ, w/λ)f(s, w) dwds.

The conclusion follows immediately.

4.2 Pointwise Estimates for |Hτp(s, z, w)|

We first show that |Hτp(s, z, w)| has Gaussian decay. To do so, we will find it convenient

to work in real variable notation instead of complex notation. As such, let x = (x1, x2)

and y = (y1, y2). Our first goal is to prove:

Theorem 4.4. If e−s�τp [f ](x) =
∫

CHτp(s, x, y)f(y) dy, the heat kernel Hτp(s, x, y), sat-

isfies the estimate

|Hτp(s, x, y)| ≤
1

πs
e−

|x−y|2
s .
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Proof. We will use the Feynman-Kac-Itô formula from [Sim79]. Let dx be Lebesgue

measure on R2 and let (B,B, dP ) be a measure space of sample paths for a 2-dimensional

Brownian motion b(s). Let dµ = dP ⊗ dx be Wiener measure on B × R2 and let

ω(s) = x+ b(s). If we let

a(x) = τ

(
− ∂p

∂x2

,
∂p

∂x1

)
and

V (x) =
τ

2
4p(x),

then for f ∈ C2(R2),

1

2
(−i∇− a)2f + V f = −1

2
4f +

i

2
(∇ · a)f + ia · ∇f +

1

2
|a|2f + V f.

But ∇ · a = τ(− ∂2p
∂x1∂x2

+ ∂2p
∂x1∂x2

) = 0 and 1
2
|a|2 = 1

2
τ 2|∇p|2. Thus,

1

2
(−i∇− a)2f + V f = 2�τp,

so 2�τp is the quantum mechanical energy operator for a particle in a magnetic field

with vector potential a(x) and electric potential V . The Feynman-Kac-Itô formula for

for f, g ∈ C∞
c (R2) is

(
e−2s�τpf, g

)
=

∫
eF (s,ω)f(ω(s))g(ω(0)) dµ (4.3)

where

F (s, ω) = −i
∫ s

0

a(ω(t)) · dω(t)− i

2

∫ s

0

(∇ · a)(ω(t)) dt−
∫ s

0

V (ω(t)) dt.

b(s) has 2-dimensional normal distribution with covariance s, so we can rewrite (4.3) as
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follows: ∫∫
R2×R2

Hτp(2s, x, y)f(y)g(x) dydx =

∫
eF (s,ω)f(ω(s))g(ω(0)) dµ

=

∫
R2

E
[
eF (s,ω)f(ω(s))g(ω(0))

]
dx

=

∫
R2

E
[
E[eF (s,ω)f(ω(s))g(ω(0))

∣∣ω(0) = x, ω(s) = y]
]
dx

=

∫
R2

E
[
E[eF (s,ω)

∣∣ω(0) = x, ω(s) = y]
]
f(y)g(x) dx

=
1

2πs

∫∫
R2×R2

eF̃ (s,x+y)f(x+ y)g(x)e−
|y|2
2s dydx

=
1

2πs

∫∫
R2×R2

eF̃ (s,y)f(y)g(x)e−
|x−y|2

2s dydx.

Thus, Hτp(2s, x, y) = eF̃ (s,y)e−
|x−y|2

2s for some F̃ (s, y) satisfying |eF̃ (s,y)| ≤ 1. That

|eF̃ (s,y)| ≤ 1 follows from |eF (s,ω)| ≤ 1.

A critically important fact about the Feynman-Kac-Itô formula is the requirement

that V ≥ 0. When τ < 0, V ≤ 0, and the argument from Theorem 4.4 fails. Even if we

could use the argument, the real part of eF (s,ω) is e−
R s
0 V (ω(t)) dt, a term that we would

expect to be very large. Qualitatively, Feynman-Kac-Itô is the wrong direction to push.

In fact, since it is equivalent to study the τ < 0 and �τp or τ > 0 and �̃τp, an analog to

Theorem 4.4 must fail if τ < 0 because lims→∞ H̃τp(s, z, w) = Sτp(z, w).

We now turn to proving a large time decay estimate for Hτp(s, z, w). Let P 2m be

the set of degree 2m polynomials whose coefficients (in absolute value) sum to 1. We

can identify the set of polynomials of degree 2m with Rn for some n, and under this

identification, P 2m is identified with the unit sphere, a compact set. Having constants

depending only on P 2m is essential for estimates obtained through scaling.

Theorem 4.5. If e−s�τp [f ](z) =
∫

CHτp(s, z, w)f(w) dw, then there exist constants C1
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and C2 which depend on the degree of p so that

|Hτp(s, z, w)| ≤ C1

s
e
−C2

s

µ(z, 1
τ )2 .

Proof. From Proposition 4.1, there exists a polynomial p1(w) = p0(w + z) so that

Hτp(s, z, w) = Hτp1(s, 0, w − z),

so we can reduce to the case of estimating Hτp1(s, 0, w). By Proposition 4.2, for

p2(w) =
∑
j,k≥1

a0
jkw

jw̄k,

we have

eiτT (w,0)Hτp1(s, 0, w) = Hτp2(s, 0, w),

so it is enough to estimate |Hτp2(s, 0, w)|. p2(w) has the property that ∂kp2
∂zk (0) =

∂kp2
∂z̄k (0) = 0 for all k. If we set λ = µ(z, 1

τ
)−1 and p3(w) = p2(

w
λ
), then p3 ∈ P 2m

since

τ
∑
j,k≥1

1

j!k!

∣∣∣∣ ∂j+kp2

∂zj∂z̄k
(0)

∣∣∣∣ zj z̄kλ−j−k = τΛ
(
0, µ(0, 1

τ
)
)
∼ 1.

From Proposition 4.3,

1

λ2
Hτp2(

s
λ2 , 0,

w
λ
) = Hp3(s, 0, w).

We now estimate |Hp3(s, w, 0)|. Let h(s, w) = Hp3(s, w, 0). Then ∂h
∂s
− Zp3Zp3h = 0, so

∂h

∂s
= Zp3Zp3h.

Let g(s) =
∫

C |h(s, w)|2 dw. From [Chr91a], ‖f‖L2(C) ≤ C‖Zp3f‖L2(C) where C =
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C(P 2m), so

g′(s) =

∫
C

d

ds

(
h(s, w)h(s, w)

)
dw

= 2 Re

∫
C

∂h

∂s
(s, w)h(s, w) dw

= 2 Re

∫
C
Zp3Zp3h(s, w)h(s, w) dw

= −2

∫
C

∣∣Zp3h(s, w)
∣∣2 dw

≤ −C
∫

C

∣∣h(s, w)
∣∣2 dw = −Cg(s).

Since g(s) > 0, g′(s)
g(s)

≤ −C, and integrating from s
2

to s, we have

g(s) ≤ g( s
2
)e−Cs ≤ C1

e−Cs

s
,

where the last inequality follows from Theorem 4.4. The constant C1 does not depend

on p3 (or P 2m).

Next, e−s�p3 is a semigroup, so e−
s
2
�p3e−

s
2
�p3f(z) = e−s�p3f(z).

e−s�p3f(z) =

∫
C
Hp3(s, z, w)f(w) dw,

and

e−
s
2
�p3e−

s
2
�p3f(z) =

∫
C
Hp3(

s
2 , z, v)e

− s
2
�p3f(v) dv =

∫
C

∫
C
Hp3(

s
2 , z, v)Hp3(

s
2 , v, w)f(w) dwdv.

Thus we have the reproducing identity

Hp3(s, z, w) =

∫
C
Hp3(

s
2
, z, v)Hp3(

s
2
, v, w) dv,

and an application of Cauchy-Schwarz yields

∣∣Hp3(2s, 0, w)
∣∣ ≤ (∫

C

∣∣Hp3(s, 0, v)
∣∣2 dv) 1

2
(∫

C

∣∣Hp3(s, v, w)
∣∣2 dv) 1

2

≤ C1
e−Cs

s
.
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Undoing the rescaling shows |Hτp2(µ(0, 1
τ
)2s, 0, µ(0, 1

τ
)w)| ≤ C1

s
1

µ(0,
1
τ

)2
e−C2s, so

|Hτp2(s, 0, w)| ≤ C1

s
e
−C2

s
µ(0,1/τ)2 ,

and ∣∣Hτp(s, z, w)
∣∣ ≤ C1

s
e
−C2

s
µ(z,1/τ)2 .

The motivation for using g′(s) and the reproducing identity was [Fab93].

4.3 Derivative Estimates

The derivative estimates are proven in a series of lemmas. The most accessible case

is proven first and each successive lemma builds on the previous calculation. Each L2

estimate at one step is used to prove a pointwise estimate in the next. Define the decay

term D(s, x, y) to be

D(s, x, y) = e−
|x−y|2

2s e
−C2

2
µ(x,1/τ)2 (4.4)

where C2 is the constant from Theorem 4.5. Also, let

Ir(s) = (s− r2, s) and Qr(s, x) = Ir(s)×D(x, r).

Proposition 4.6. There exists Cn so that for 0 < r <
√
s0

16
,∥∥∥∥∂nHτp

∂sn
(·, x, ·)

∥∥∥∥
L2(Qr(s0,y0))

≤ C

sn0
.

Proof. We have
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∥∥∥∥∂nHτp

∂sn
(·, x0, ·)

∥∥∥∥2

L2(Qr(s0,y0))

=

∫
Ir(s0)

∣∣∣∣∣∣
(∫

D(y0,r)

∣∣∣∣∂nHτp

∂sn
(s, x0, y)

∣∣∣∣2 dy
)1/2

∣∣∣∣∣∣
2

ds

=

∫
Ir(s0)

∣∣∣∣ sup
ϕ∈C∞c (D(y0,r))

‖ϕ‖
L2=1

∫
∂nHτp

∂sn
(s, x0, y)ϕ(y) dy

∣∣∣∣2 ds
=

∫
Ir(s0)

∣∣∣∣ sup
ϕ∈C∞c (D(y0,r))

‖ϕ‖
L2=1

∂n

∂sn
Hs
τp[ϕ](x0)

∣∣∣∣2 ds. (4.5)

The key to the proof is that ∂n

∂snH
s
τp[ϕ](x) satisfies ( ∂

∂s
+ �x)

∂n

∂snHτp(s, x, y) = 0. By

Lemma A.1 and Theorem 3.1 (d), estimating an arbitrary term from the supremum in

(4.5) yields

∣∣∣∣ ∂n∂snHs
τp[ϕ](x0)

∣∣∣∣ ≤ C

r2

(∫∫
Qr(s,x0)

∣∣∣∣ ∂n∂snH t
τp[ϕ](x)

∣∣∣∣2 dxdt
)1/2

≤ C

r2

(∫
I√2r(s0)

∥∥∥∥ ∂n∂snH t
τp[ϕ]

∥∥∥∥2

L2

dt

)1/2

≤ C

r2

(∫ s0

s0−2r2

1

t2n
dt

)1/2

≤ C

rsn0
(4.6)

Putting (4.5) into (4.6), we have∥∥∥∥∂nHτp

∂sn
(·, x0, ·)

∥∥∥∥
L2(Qr(s0,y0)

≤ C

(∫
Ir(s0)

1

r2s2n
0

ds

)1/2

=
C

sn0
.

Lemma 4.7. Let n1, n2, n3 ≥ 0 and n = n1 +n2 +n3. Then there exists Cn > 0 so that∣∣∣∣ ∂n1

∂sn1
�n2
τp,x(�

#
τp,y)

n3Hτp(s, x, y)

∣∣∣∣ ≤ Cn

sn+1
0

D(s, x, y)
1
2

Proof. Since Hτp satisfies ( ∂
∂s

+ �τp,x)Hτp(s, x, y) = 0 when s 6= 0 or x 6= y, it is enough

to show the estimate for Hn(s, x, y) = ∂n

∂snHτp(s, x, y). Proof by induction. The base
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case follows from combining Theorem 4.4 and Theorem 4.5.

|Hτp(s, x, y)| ≤ |Hτp(s, x, y)|
1
2 |Hτp(s, x, y)|

1
2 ≤ C

s
e−

|x−y|2
2s e

−C2
s

µ(x,1/τ)2 .

Assume the result holds for Hn−1. Let r =
√
s0

16
. Let ψ ∈ C∞

c

(
Q2r(s0, y0)

)
where

ψ
∣∣∣
Qr(s0,y0)

≡ 1, 0 ≤ ψ ≤ 1, and ∂jψ
∂sj ≤ cj

r2j . We can use Lemma A.1 because if s > 0,

Hn−1(s, z, w) satisfies HτpHn−1(s, x, y) = 0. Using Lemma A.1 and Proposition 4.6, for

r > 0 and Q = Q2r(s0, y0)∣∣∣∣∂nHτp

∂sn
(s0, x, y0)

∣∣∣∣ ≤ C

r2

(∫∫
Qr(s0,y0)

∣∣∣∣∂nHτp

∂sn
(s, x, y)

∣∣∣∣2 dsdy
) 1

2

≤ C

r2

(∫∫
R×C

∂nHτp

∂sn
(s, x, y)

∂nHτp

∂sn
(s, x, y)ψ(s, y) dsdy

) 1
2

=
C

r2

(∫∫
R×C

Hτp(s, x, y)
n∑
j=0

∂n+jHτp

∂sn+j
(s, x, y)

∂n−jψ

∂sn−j
(s, y) dsdy

) 1
2

≤ C

r2

[
‖Hτp(·, x, ·)‖L2(Q)

n∑
j=0

cj
1

r2(n−j)

∥∥∥∥∂n+jHτp

∂sn+j
(·, x, ·)

∥∥∥∥
L2(Q)

] 1
2

≤ C

r2

[
Hτp(s0, x, y0)r

2

(
1

s2n
0

+
1

r2nsn0

)]1/2

≤ Cn
r

D(s0, x, y0)
1
2

s
1
2
0

(
1

sn0
+

1

rns
n
2
0

)
≤ Cn

sn+1
0

D(s0, x, y0)
1
2

Integrating in s gives the immediate corollary:

Corollary 4.8. Let n1, n2, n3 ≥ 0 and n = n1 + n2 + n3. Then there exists Cn > 0 so

that ∥∥∥∥ ∂n1

∂sn1
�n2
τp,x(�

#
τp,y)

n3Hτp(s, x, y)

∥∥∥∥
L2(C)

≤ Cn

sn+ 1
2

.
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Lemma 4.9. Let α be a multiindex and j ≥ 0. Then there exists C|α|,j > 0 so that if

R = min{
√
s0

16
,
µ(x0,

1
τ

)

4
}, then

∣∣Xα
x (�#

τp,y)
jHτp(s, x, y)

∣∣+ ∣∣�j
τp,xU

α
y Hτp(s, x, y)

∣∣ ≤ C|α|

R
1
2 s

3
4
+j
D(s, x0, y)

1
4R−

1
2
|α|s−

1
4
|α|.

Proof. It is enough to bound |Uα
y �j

τp,xHτp(s, x0, y)| for a fixed x0 ∈ C. In fact, we can

even assume that ∂np
∂zn (x0) = ∂np

∂z̄n (x0) = 0 for all n by Proposition 4.2. This means if

|y − x0| ≤ µ(x0,
1
τ
),∣∣∣∣ ∂j+kp∂zj∂z̄k

(y)

∣∣∣∣ ≤ 1

µ(x0,
1
τ
)j+k

τΛ(x0, µ(x0,
1
τ
)) ∼ 1

µ(x0,
1
τ
)j+k

(4.7)

Let R = min{
√
s

16
, 1

4
µ(x0,

1
τ
)}. Also, fix s and let g(y) = �j

τp,xHτp(s, x0, y). Let D stand

for ∂
∂x

or ∂
∂y

Then from Thereom 3.10, if ϕ ∈ C∞
c (D(x0, R)) with 0 ≤ ϕ ≤ 1, |Dβϕ| ≤ c|β|

R|β|

for 0 ≤ |β| ≤ 2, we have

|Uα
y g(y)| ≤

C

R

∑
|β|≤2

R|β|‖ϕ
1
2Uβ

y U
α
y g‖L2(C). (4.8)

Then

‖ϕ
1
2Uβ

y U
α
y g‖2

L2(C) ≤
(
Uβ
y U

α
y g, ϕU

β
y U

α
y g
)

=
∣∣∣(g, Uβ

y U
α
y

(
ϕUβ

y U
α
y g
))∣∣∣

=
∑

|γ1|+|γ2|=|α|+|β|

cγ1,γ2

(
g, (Dγ1ϕ)Uγ2

y U
β
y U

α
y g
)

≤
∑

|γ1|+|γ2|=|α|+|β|

cγ1,γ2‖g‖L2(D(x0,R))

1

R|γ1|
‖Uγ2

y U
β
y U

α
y g‖L2(D(x0,R)) (4.9)

Next, from Corollary 4.8, Proposition 3.7, and Theorem 3.1, for some OPF operator of
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order 0 Bτ , we have the estimate (note the complex conjugate in the first inequality),

‖Uγ2
y U

β
y U

α
y g‖2

L2(D(x0,R)) ≤
(
Xγ2
y X

β
yX

α
y ḡ, X

γ2
y X

β
yX

α
y ḡ
)

=
(
ḡ, Xα

yX
β
yX

γ2
y X

γ2
y X

β
yX

α
y ḡ
)

≤ ‖g‖L2(C)‖Bτ�
|γ2|+|β|+|α|
τp ḡ‖L2(C)

≤ C

s
1
2
+j
s−(|γ2|+|β|+|α|+ 1

2
). (4.10)

Plugging (4.9) into (4.10) gives

‖ϕ
1
2Xβ

yX
α
y ḡ‖2

L2(C) ≤ C|g(y)|R
∑

|γ1|+|γ2|=|α|+|β|

cγ1,γ2
1

R|γ1|
s−

1
2
(|γ2|+|β|+|α|+1+2j) (4.11)

Using the fact that R ≤
√
s and inserting (4.11) into (4.8), we have

|Xα
y g(y)| ≤

C|α|
R

∑
|β|≤2

R|β||g(y)|
1
2R

1
2

∑
|γ1|+|γ2|=|α|+|β|

s−
1
4
(|γ2|+|β|+|α|+1+2j) 1

R
|γ1|
2

≤
C|α|

R
1
2 s

3
4
+j
D(s, x0, y)

1
4

∑
|β|≤2

∑
|γ1|+|γ2|=|α|+|β|

R|β|−
1
2
|γ1|s−

1
4
|γ2|s−

1
4
|β|s−

1
4
|α|

≤
C|α|

R
1
2 s

3
4
+j
D(s, x0, y)

1
4R−

1
2
|α|s−

1
4
|α|.

Corollary 4.10. Let α be a multiindex and j ≥ 0. Then there exists C|α|,j > 0 so that

∥∥Xα
x (�#

τp,y)
jHτp(s, x, ·)

∥∥
L2(C)

+
∥∥Uα

y �j
τp,xHτp(s, x, ·)

∥∥
L2(C)

≤
C|α|,j

s
1
2
+j+

|α|
2

.

Proof. Using the estimate from Lemma 4.9, if R =
√
s

16
, then the result follows by direct

calculation and a simple change of variables. If R = 1
4
µ(x, 1

τ
), then we use the fact

that D(s, x, y)
1
4 ≤ CjD(s, x, y)

1
8

(
µ(x, 1

τ
)2

s

)j
for any j ≥ 0. With this estimate, the result

follows immediately.

The final lemma we need is:
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Lemma 4.11. Let α and β be multiindices. There exists C|α|,|β| > 0 so that if R =

min{
√
s0

16
,
µ(x0,

1
τ

)

4
}, then

∣∣Xα
xX

β
yHτp(s, x, y)

∣∣ ≤ C|α|,|β|
1

R
3
4 s

5
8

R−
|α|
2
− |β|

4 s−
|α|
4
− 3|β|

8 D(s, x, y)
1
2 .

Proof. As in Lemma 4.9, we may assume that ∂np
∂zn (x0) = ∂np

∂z̄n (x0) = 0 for all n so by (4.7)∣∣∣∣ ∂j+kp∂zj∂z̄k
(y)

∣∣∣∣ . 1

µ(x0,
1
τ
)j+k

.

Fix s and x0. Let y ∈ D(x0, R). Let ϕ ∈ C∞
c (D(x0, 2R)) so that ϕ

∣∣∣
D(x0,R)

≡ 1,

0 ≤ ϕ ≤ 1 and |Dαϕ| ≤ c|α|
R|α|

. Let f(x) = Xβ
yHτp(s, x, y) and g(x) = Xα

xX
β
yHτp(s, x, y).

From Theorem 3.10,

|g(x0)| ≤
C

R

∑
|γ|≤2

R|γ|‖ϕ
1
2Xγ

xg‖L2(C).

Next,

‖ϕ
1
2Xγ

xg‖2
L2(C) =

(
Xγ
xX

α
x f, ϕX

γ
xg
)

=
∣∣∣(f,Xα

xX
γ
x

[
ϕXγ

xg
])∣∣∣

=
∑

|γ1|+|γ2|=|γ|+|α|

cγ1,γ2

∣∣∣(f,Dγ1ϕXγ2
x X

γ
xg
)∣∣∣

≤
∑

|γ1|+|γ2|=|γ|+|α|

cγ1,γ2‖f‖L2(D(x0,R))

1

R|γ1|
‖Xγ2

x X
γ
xg‖L2(C).

Using Proposition 3.7 and Corollary 4.10, for some order zero OPF operator Bτ we have

‖Xγ2
x X

γ
xg‖2

L2(C) =
(
Xγ2
x X

γ
xX

α
x f,X

γ2
x X

γ
xX

α
x f
)

=
∣∣∣(f,Xα

xX
γ
xX

γ2
x X

γ2
x X

γ
xX

α
x f
)∣∣∣

≤ ‖f‖L2(C)‖Bτ�
|α|+|γ|+|γ2|
τp f‖L2(C)

≤ C|α|+|γ|+|γ2|+|β|s
− 1

2
(|β|+1)s−

1
2
(|β|+1)−|α|−|γ|−|γ2|

= C|α|+|γ|+|γ2|+|β|s
−|β|−1−|α|−|γ|−|γ2|.
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Thus, since ‖f‖L2(D(x0,R)) ≤ C|f(x0)|R,

|g(x0)| ≤ C|α|,|β|
1

R

∑
|γ|≤2

∑
|γ1|+|γ2|=|γ|+|α|

R|γ|R−
|γ1|
2 s−

1
4
(|β|+1+|α|+|γ|+|γ2|)|f(x0)|

1
2R

1
2

≤ C|α|,|β|
1

R
3
4 s

5
8

∑
|γ|≤2

∑
|γ1|+|γ2|=|γ|+|α|

R|γ|R−
|γ1|
2 s−

|γ2|
4 s−

1
4
(|γ|+|α|)s−

|β|
4 s−

|β|
8 R−

|β|
4 D(s, x, y)

1
8

≤ C|α|,|β|
1

R
3
4 s

5
8

R−
|α|
2 s−

|α|
4 R−

|β|
4 s−

3
8
|β|

As a consequence of Lemma 4.11, we have:

Theorem 1.3. Let n ≥ 0 and Y α be a product of |α| operators Y = Z̄τp or Zτp if acting

in z and (Zτp) or (Z̄τp) if acting in w. There exists constants c1, c2, c3 > 0 so that if

τ > 0, ∣∣∣∣ ∂n∂snY αHτp(s, z, w)

∣∣∣∣ ≤ c1
1

sn+ 1
2
|α|+1

e−c2
|z−w|2

s e
−c3 s

µ(z, 1
τ )2 .

Proof. The theorem follows Lemma 4.11 using the argument of the proof of Corollary

4.10.

Using Theorem 1.3, we can integrate in s and recover estimates on Gτp(z, w), the

fundamental solution of �τp.

Corollary 1.4. Let Gτp(z, w) be the fundamental solution for �−1
τp . There exists con-

stants C1, C2 > 0 so that if τ > 0,

|Gτp(z, w)| ≤ C1


log
(

2µ(z, 1
τ
)

|z−w|

)
µ(z, 1

τ
) ≥ |z − w|

e
−C2

|z−w|
µ(z, 1

τ ) µ(z, 1
τ
) ≤ |z − w|
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Proof. We just need to integrate in s for the estimate. Let δ > 0. Then∫ ∞

0

Hτp(s, x, y) ds ≤
∫ δ

0

1

s
e−c2

|x−y|2
s ds+

∫ ∞

δ

1

s
e
−c3 s

µ(x, 1
τ )2 ds = I + II.

To estimate I, we let t = c2
|x−y|2
s

, so −1
t
dt = 1

s
ds and

I =

∫ ∞

|x−y|2
δ

1

t
e−t dt.

If c2
|x−y|2
δ

≤ 1, then

I =

∫ 1

c2
|x−y|2

δ

1

t
e−t dt+

∫ ∞

1

1

t
e−t dt ≤ C

(
log
( δ

|x− y|2
)

+ 1

)
.

Also, if c2
|x−y|2
δ

≥ 1,

I ≤ 1

c2
|x−y|2
δ

∫ ∞

c2
|x−y|2

δ

e−t dt = C
δ

|x− y|2
e−c2

|x−y|2
δ ≤ Ce−c2

|x−y|2
δ .

To estimate II, set t = c3
s

µ(x, 1
τ
)2

, and we have

II =

∫ ∞

c3
δ

µ(x, 1
τ )2

1

t
e−t dt.

If c3
δ

µ(x, 1
τ
)2
≤ 1, we have

II =

∫ 1

c3
δ

µ(x, 1
τ )2

1

t
e−t dt+

∫ ∞

1

1

t
e−t dt ≤ C

(
log
(µ(x, 1

τ
)2

δ

)
+ 1

)
.

Also, if c3
δ

µ(x, 1
τ
)2
≥ 1,

II ≤
(
c3

δ

µ(x, 1
τ
)2

)−1
∫ ∞

c3
δ

µ(x, 1
τ )2

e−t dt =
µ(x, 1

τ
)2

δ
e
−c3 δ

µ(x, 1
τ )2 ≤ Ce

−c3 δ

µ(x, 1
τ )2 .

Setting δ = |x−y|
µ(x, 1

τ
)

yields the result.
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Appendix A

Kurata’s Subsolution Estimate

The goal of this appendix is to prove a version of the subsolution estimate from [Kur00].

We will prove:

Lemma A.1. If (s0, z0) ∈ (0,∞)× C and u(s, z) is a C2 solution of

∂u

∂s
+ �τpu = 0

on Q2r(s0, z0). Then if τ > 0, there exists C > 0 so that

sup
(s,z)∈Qr/2(s0,z0)

|u(s, z)| ≤ C

r2

∫∫
Q2r/3(s0,z0)

|u(s, z)|2 dzds.

The proof has two parts. First, we show that ∂|u|
∂s
≤ 4|u|, i.e. |u| is a subsolution of

the ordinary heat equation

∂g

∂s
−4g = 0. (A.1)

Second, we use the “standard subsolution estimate” for (A.1) to conclude the proof. Let

the heat ball E(s, z; r) be

E(s, z; r) =

{
(t, w) ∈ R× C : t ≤ s and

1

4πt
e−

|w|2
4t ≥ 1

r2

}
.

If v(s, z) is a subsolution of (A.1) on a neighborhood of E(s, z; r), i.e. ∂v
∂s
− 4v ≤ 0,

then the standard subsolution estimate for (A.1) is

v(s, z) ≤ 1

4r2

∫∫
E(s,z;r)

v(t, w)
|w|2

t2
dwdt. (A.2)
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A proof of this inequality can be found in [Eva00] (§2.3 Theorem 3, §2.5 Problem 14).

One result we will need is Kato’s inequality (Theorem X.33, [RS75]):

Proposition A.2 (Kato’s Inequality). Let f ∈ L1
loc(C), (X2

1 +X2
2 )f ∈ L2

loc, and sgn f =

f̄
|f | . Then

4|f | ≥ Re
[
sgn f (X2

1 +X2
2 )f
]
.

Proof of Lemma A.1. By computing ∂|u|2
∂s

, we first note that

∂|u|
∂s

= Re
(∂u
∂s

sgnu
)
.

Next, a short computation shows X2
1 +X2

2 = −4�τp + 4Ṽ where Ṽ = 1
4
τ4p. Then by

Kato’s inequality,

4|u| ≥ Re
[
sgnu (X2

1 +X2
2 )u
]

= Re
[
sgnu (−4�τp + 4Ṽ )u

]
≥ −4 Re

(
sgnu�τpu

)
= −4 Re

(
sgnu

∂u

∂s

)
= −4 Re

(∂|u|
∂s

)
.

By (A.2),

|u(s, z)| ≤ 1

4r2

∫∫
E(s,z;r)

|u(t, w)| |w|
2

t2
dwdt.

To finish the proof, observe that for some constant C, E(s, z; r) ⊂ QCr(s, z). The result

is proved by combining this fact with Hölder’s inequality and noting that∫∫
E(s,z;r)

|w − z|4

(t− s)4
dwdt =

∫∫
E(0,0;r)

|w|4

t4
dwdt =

∫∫
E(0,0;1)

|y|4

t̃4
dydt̃ = c.

under the change of variables w = ry and t = r2t̃.
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Bergman and Szegö kernels in C2. Ann. of Math., 129:113–149, 1989.

[NS01] A. Nagel and E.M. Stein. The �b-heat equation on pseudoconvex manifolds

of finite type in C2. Mathematische Zeitschrift, 238:37–88, 2001.

[NS03] A. Nagel and E.M. Stein. The ∂̄b-complex on decoupled domains in Cn,

n ≥ 3. in preparation, 2003.

[NS04] A. Nagel and E.M. Stein. On the product theory of singular integrals. Revista
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